Optimized Ciclopirox-Based Eudragit RLPO Nail Lacquer: Effect of Endopeptidase Enzyme as Permeation Enhancer on Transungual Drug Delivery and Efficiency Against Onychomycosis

2017 ◽  
Vol 19 (3) ◽  
pp. 1048-1060 ◽  
Author(s):  
Abeer Khattab ◽  
Samia Shalaby
2020 ◽  
Vol 21 ◽  
Author(s):  
Dickson Pius Wande ◽  
Qin Cui ◽  
Shijie Chen ◽  
Cheng Xu ◽  
Hui Xiong ◽  
...  

: As a unique and pleiotropic polymer, d-alpha-tocopheryl polyethylene glycol succinate (Tocophersolan) is a polymeric synthetic version of vitamin E. Tocophersolan has attracted enormous attention as a versatile excipient in different biomedical applications including drug delivery systems and nutraceuticals. The multiple inherent properties of Tocophersolan make it play flexible roles in drug delivery system design, including excipients with outstanding biocompatibility, solubilizer with the ability of promoting drug dissolution, drug permeation enhancer, P-glycoprotein inhibitor and anticancer compound. For these reasons, Tocophersolan has been widely used for improving the bioavailability of numerous pharmaceutical active ingredients. Tocophersolan has been approved by stringent regulatory authorities (such as US FDA, EMA, and PMDA) as a safe pharmaceutical excipient. In this review, we systematically curated current advances in nano-based delivery systems consisting of Tocophersolan with possibilities for futuristic applications in drug delivery, gene therapy, and nanotheranostic.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 339 ◽  
Author(s):  
Maher ◽  
Casettari ◽  
Illum

Drug delivery systems that safely and consistently improve transport of poorly absorbed compounds across epithelial barriers are highly sought within the drug delivery field. The use of chemical permeation enhancers is one of the simplest and widely tested approaches to improve transmucosal permeability via oral, nasal, buccal, ocular and pulmonary routes. To date, only a small number of permeation enhancers have progressed to clinical trials, and only one product that includes a permeation enhancer has reached the pharmaceutical market. This editorial is an introduction to the special issue entitled Transmucosal Absorption Enhancers in the Drug Delivery Field (https://www.mdpi.com/journal/pharmaceutics/special_issues/transmucosal_absorption_enhancers). The guest editors outline the scope of the issue, reflect on the results and the conclusions of the 19 articles published in the issue and provide an outlook on the use of permeation enhancers in the drug delivery field.


2020 ◽  
Vol 10 ◽  
Author(s):  
Rohan Aggarwal ◽  
Monika Targhotra ◽  
Bhumika Kumar ◽  
P. K. Sahoo ◽  
Meenakshi K. Chauhan

Aim: Due to the various drawbacks associated with current treatment therapy of onychomycosis, the main aim was to develop thermosensitive hydrogels and thermosensitive polypseudorotaxanes hydrogels-based nail lacquer for transungual delivery of Efinaconazole for management of onychomycosis. The objective is to enhance the permeation and retention of the drug in the nails and improve patient compliance. Method: Poloxamer 407 and Hydroxy Propyl -β- cyclodextrin was used to prepare the nail lacquers. 2-mercaptoethanol was added as a penetration enhancer to improve the penetration of the drug across the nail plate. The formulations were optimized by varying the concentration of poloxamer and water:ethanol ratio and evaluated based on basis of drying time, sol-gel transition temperature, ex vivo drug release and viscosity. The optimized formulation was further evaluated for pH, water resistance, non-volatile content, drug content, blush test, spreadability, and stability studies. Results: The increase in ethanol concentration, reduction in poloxamer proportion lead to reduction in lacquer stickiness thus, improving the lacquer drying time and penetration. The polypseudorotaxanes improved the permeation profile of the drug in comparison to the marketed nail lacquer. The presence of 2-mercaptoethanol also contributed in transungual delivery of Efinaconazole. Conclusion:: The polypseudorotaxanes based nail lacquer with the incorporation of penetration enhancer was able to achieve a high rate of drug penetration and retention, thus supporting the potential use of aqueous based-nail lacquer in transungual drug delivery for the onychomycosis treatment.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 276 ◽  
Author(s):  
Barbara Valdes ◽  
Ana Serro ◽  
Joana Marto ◽  
Rui Galhano dos Santos ◽  
Elena Cutrín Gómez ◽  
...  

Onychomycosis affects about 15% of the population. This disease causes physical and psychosocial discomfort to infected patients. Topical treatment (creams, solutions, gels, colloidal carriers, and nail lacquers) is usually the most commonly required due to the high toxicity of oral drugs. Currently, the most common topical formulations (creams and lotions) present a low drug delivery to the nail infection. Nail lacquers appear to increase drug delivery and simultaneously improve the effectiveness of treatment with increased patient compliance. These formulations leave a polymer film on the nail plate after solvent evaporation. The duration of the film residence in the nail constitutes an important property of nail lacquer formulation. In this study, a polyurethane polymer was used to delivery antifungals drugs, such as terbinafine hydrochloride (TH) and ciclopirox olamine (CPX) and the influence of its concentration on the properties of nail lacquer formulations was assessed. The nail lacquer containing the lowest polymer concentration (10%) was the most effective regarding the in vitro release, permeation, and antifungal activity. It has also been demonstrated that the application of PU-based nail lacquer improves the nail plate, making it smooth and uniform and reduces the porosity contributing to the greater effectiveness of these vehicles. To conclude, the use of polyurethane in nail formulations is promising for nail therapeutics.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Bipul Nath ◽  
Lila Kanta Nath

The purpose of this study is to explore the possible applicability of Sterculia urens gum as a novel carrier for colonic delivery system of a sparingly soluble drug, azathioprine. The study involves designing a microflora triggered colon-targeted drug delivery system (MCDDS) which consists of a central polysaccharide core and is coated to different film thicknesses with blends of chitosan/Eudragit RLPO, and is overcoated with Eudragit L00 to provide acid and intestinal resistance. The microflora degradation property of gum was investigated in rat caecal medium. Drug release study in simulated colonic fluid revealed that swelling force of the gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudargit coating in microflora-activated environment. Chitosan in the mixed film coat was found to be degraded by enzymatic action of the microflora in the colon. Release kinetic data revealed that the optimized MCDDS was fitted well into first-order model, and apparent lag time was found to be 6 hours, followed by Higuchi release kinetics. In vivo study in rabbits shows delayed , prolonged absorption time, decreased , and absorption rate constant (Ka), indicating a reduced systemic toxicity of the drug as compared to other dosage forms.


Sign in / Sign up

Export Citation Format

Share Document