Temperature-dependent electrical conduction in porous silicon: Non-Arrhenius behavior

2001 ◽  
Vol 54 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Mikrajuddin ◽  
F. G Shi ◽  
K Okuyama
2000 ◽  
Vol 31 (3) ◽  
pp. 187-191 ◽  
Author(s):  
Mikrajuddin ◽  
F.G Shi ◽  
K Okuyama

2019 ◽  
Vol 27 (01) ◽  
pp. 1950083 ◽  
Author(s):  
H. H. GULLU ◽  
M. PARLAK

Zn–In–Se thin films were fabricated on the ultrasonically cleaned glass substrates masked with clover-shaped geometry by thermal evaporation of its elemental sources. Temperature-dependent conductivity characteristics of the films were investigated under dark and illuminated conditions. The semiconductor type of the films was found as n-type by thermal probe test. According to the van der Pauw technique, the dark electrical conductivity analyses showed that the variations of conductivity of unannealed and annealed at [Formula: see text]C samples are in exponential dependence of temperature. These conductivity profiles were found to be dominated by the thermionic emission at high temperature region whereas their behaviors at low temperatures were modeled by hopping theory. On the contrary, as a result of the further annealing temperatures, the surface of the samples showed semi-metallic characteristics with deviating from expected Arrhenius behavior. In addition, the temperature-dependent photoconductivity of the films was analyzed under different illumination intensities and the results were explained by the supra-linear characteristic based on the two-center recombination model.


2016 ◽  
Vol 70 (12) ◽  
pp. 1974-1980 ◽  
Author(s):  
Justin M. Reynard ◽  
Nathan S. Van Gorder ◽  
Caley A. Richardson ◽  
Richie D. Eriacho ◽  
Frank V. Bright

We report new instrumentation for rapidly and reliably measuring the temperature-dependent photoluminescence response from porous silicon as a function of analyte vapor concentration. The new system maintains the porous silicon under inert conditions and it allows on-the-fly steady-state and time-resolved photoluminescence intensity and hyper-spectral measurements between 293 K and 450 K. The new system yields reliable data at least 100-fold faster in comparison to previous instrument platforms.


1999 ◽  
Vol 33 (11) ◽  
pp. 1202-1205
Author(s):  
E. F. Venger ◽  
É. B. Kaganovich ◽  
S. I. Kirillova ◽  
É. G. Manoilov ◽  
V. E. Primachenko ◽  
...  

2018 ◽  
Vol 24 (8) ◽  
pp. 5629-5632 ◽  
Author(s):  
Sweety Supriya ◽  
Sunil Kumar ◽  
Manoranjan Kar

The ac conductivity and dielectric properties on CoFe2−xMnxO4 for x = 0.00, 0.10, 0.15 and 0.20 have been studied in detail. All the samples were prepared in nanocrystalline size. These materials are found to be crystallized to Fd <mml:math display="block"> <mml:semantics> <mml:mover accent="true"> <mml:mi>3</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:semantics> </mml:math> m space group in cubic spinel structure. The dielectric constant and ac conductivity has been discussed as a function of frequency, temperature and composition. The relation between dielectric constant and ac conductivity has been analyzed and the results validate each other. The frequency response of ac conductivity (σac) obeys Johnschers power law and the parameters obtained, explain the sources of ac and dc electrical conductivity in the material. The frequency response of σac follows Maxwell–Wagner two-layer model. The influence of frequency as pumping force on activation energy has been determined. The temperature dependent ac conductivity shows the Arrhenius behavior. The σac observed to be enhanced with increase in frequency as well as temperature. The semiconducting behavior (NTCR) was also evident from temperature dependent electrical transport properties study. The low value of ac conductivity suggests a possible use of this material in dielectric applications.


Sign in / Sign up

Export Citation Format

Share Document