An Activating Variant in CTNNB1 is Associated with a Sclerosing Bone Dysplasia and Adrenocortical Neoplasia

2020 ◽  
Vol 105 (3) ◽  
pp. 688-695 ◽  
Author(s):  
Hui Peng ◽  
Zandra A Jenkins ◽  
Ruby White ◽  
Sam Connors ◽  
Matthew F Hunter ◽  
...  

Abstract Context The WNT/β-catenin pathway is central to the pathogenesis of various human diseases including those affecting bone development and tumor progression. Objective To evaluate the role of a gain-of-function variant in CTNNB1 in a child with a sclerosing bone dysplasia and an adrenocortical adenoma. Design Whole exome sequencing with corroborative biochemical analyses. Patients We recruited a child with a sclerosing bone dysplasia and an adrenocortical adenoma together with her unaffected parents. Intervention Whole exome sequencing and performance of immunoblotting and luciferase-based assays to assess the cellular consequences of a de novo variant in CTNNB1. Main Outcome Measure(s)/Result A de novo variant in CTNNB1 (c.131C>T; p.[Pro44Leu]) was identified in a patient with a sclerosing bone dysplasia and an adrenocortical adenoma. A luciferase-based transcriptional assay of WNT signaling activity verified that the activity of β-catenin was increased in the cells transfected with a CTNNB1p.Pro44Leu construct (P = 4.00 × 10–5). The β-catenin p.Pro44Leu variant was also associated with a decrease in phosphorylation at Ser45 and Ser33/Ser37/Thr41 in comparison to a wild-type (WT) CTNNB1 construct (P = 2.16 × 10–3, P = 9.34 × 10–8 respectively). Conclusion Increased β-catenin activity associated with a de novo gain-of-function CTNNB1 variant is associated with osteosclerotic phenotype and adrenocortical neoplasia.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Chuphong Thongnak ◽  
Areerat Hnoonual ◽  
Duangkamol Tangviriyapaiboon ◽  
Suchaya Silvilairat ◽  
Apichaya Puangpetch ◽  
...  

Autism spectrum disorder (ASD) has a strong genetic basis, although the genetics of autism is complex and it is unclear. Genetic testing such as microarray or sequencing was widely used to identify autism markers, but they are unsuccessful in several cases. The objective of this study is to identify causative variants of autism in two Thai families by using whole-exome sequencing technique. Whole-exome sequencing was performed with autism-affected children from two unrelated families. Each sample was sequenced on SOLiD 5500xl Genetic Analyzer system followed by combined bioinformatics pipeline including annotation and filtering process to identify candidate variants. Candidate variants were validated, and the segregation study with other family members was performed using Sanger sequencing. This study identified a possible causative variant for ASD, c.2951G>A, in the FGD6 gene. We demonstrated the potential for ASD genetic variants associated with ASD using whole-exome sequencing and a bioinformatics filtering procedure. These techniques could be useful in identifying possible causative ASD variants, especially in cases in which variants cannot be identified by other techniques.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
Vol 2 (1) ◽  
pp. 100383
Author(s):  
Nicholas S. Diab ◽  
Spencer King ◽  
Weilai Dong ◽  
Garrett Allington ◽  
Amar Sheth ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 65
Author(s):  
Patricia Haug ◽  
Samuel Koller ◽  
Jordi Maggi ◽  
Elena Lang ◽  
Silke Feil ◽  
...  

Coloboma and microphthalmia (C/M) are related congenital eye malformations, which can cause significant visual impairment. Molecular diagnosis is challenging as the genes associated to date with C/M account for only a small percentage of cases. Overall, the genetic cause remains unknown in up to 80% of patients. High throughput DNA sequencing technologies, including whole-exome sequencing (WES), are therefore a useful and efficient tool for genetic screening and identification of new mutations and novel genes in C/M. In this study, we analyzed the DNA of 19 patients with C/M from 15 unrelated families using singleton WES and data analysis for 307 genes of interest. We identified seven novel and one recurrent potentially disease-causing variants in CRIM1, CHD7, FAT1, PTCH1, PUF60, BRPF1, and TGFB2 in 47% of our families, three of which occurred de novo. The detection rate in patients with ocular and extraocular manifestations (67%) was higher than in patients with an isolated ocular phenotype (46%). Our study highlights the significant genetic heterogeneity in C/M cohorts and emphasizes the diagnostic power of WES for the screening of patients and families with C/M.


Author(s):  
Bixia Zheng ◽  
Steve Seltzsam ◽  
Chunyan Wang ◽  
Luca Schierbaum ◽  
Sophia Schneider ◽  
...  

Abstract Background Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidney, may also represent monogenic causes of CAKUT. Methods We here performed whole exome sequencing (WES) in 541 families with CAKUT and generated 4 lists of CAKUT candidate genes: A) 36 FOX genes showing high expression during renal development, B) 4 FOX genes known to cause CAKUT to validate list A; C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families, and D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. Results To prioritize potential novel CAKUT candidates in FOX gene family, we overlapped 36 FOX genes (list A) with list C and D of WES-derived CAKUT candidates. Intersection with list C, identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D, identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. Conclusion We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


2019 ◽  
Vol 7 (12) ◽  
pp. 2476-2482 ◽  
Author(s):  
Simranpreet Kaur ◽  
Nicole J. Van Bergen ◽  
Wendy Anne Gold ◽  
Stefanie Eggers ◽  
Sebastian Lunke ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yunfei Tang ◽  
Yamei Liu ◽  
Lei Tong ◽  
Shini Feng ◽  
Dongshu Du ◽  
...  

Autism spectrum disorder (ASD) is a complex neurological disease characterized by impaired social communication and interaction skills, rigid behavior, decreased interest, and repetitive activities. The disease has a high degree of genetic heterogeneity, and the genetic cause of ASD in many autistic individuals is currently unclear. In this study, we report a patient with ASD whose clinical features included social interaction disorder, communication disorder, and repetitive behavior. We examined the patient’s genetic variation using whole-exome sequencing technology and found new de novo mutations. After analysis and evaluation, ARRB2 was identified as a candidate gene. To study the potential contribution of the ARRB2 gene to the human brain development and function, we first evaluated the expression profile of this gene in different brain regions and developmental stages. Then, we used weighted gene coexpression network analysis to analyze the associations between ARRB2 and ASD risk genes. Additionally, the spatial conformation and stability of the ARRB2 wild type and mutant proteins were examined by simulations. Then, we further established a mouse model of ASD. The results showed abnormal ARRB2 expression in the mouse ASD model. Our study showed that ARRB2 may be a risk gene for ASD, but the contribution of de novo ARRB2 mutations to ASD is unclear. This information will provide references for the etiology of ASD and aid in the mechanism-based drug development and treatment.


2016 ◽  
Vol 98 ◽  
Author(s):  
LIOR COHEN ◽  
SHAY TZUR ◽  
NITZA GOLDENBERG-COHEN ◽  
CONCETTA BORMANS ◽  
DORON M. BEHAR ◽  
...  

SummaryInherited optic neuropathies are a heterogeneous group of disorders characterized by mild to severe visual loss, colour vision deficit, central or paracentral visual field defects and optic disc pallor. Optic atrophies can be classified into isolated or non-syndromic and syndromic forms. While multiple modes of inheritance have been reported, autosomal dominant optic atrophy and mitochondrial inherited Leber's hereditary optic neuropathy are the most common forms. Optic atrophy type 1, caused by mutations in theOPA1gene is believed to be the most common hereditary optic neuropathy, and most patients inherit a mutation from an affected parent. In this study we used whole-exome sequencing to investigate the genetic aetiology in a patient affected with isolated optic atrophy. Since the proband was the only affected individual in his extended family, and was a product of consanguineous marriage, homozygosity mapping followed by whole-exome sequencing were pursued. Exome results identified a novelde novo OPA1mutation in the proband. We conclude, that thoughde novo OPA1mutations are uncommon, testing of common optic atrophy-associated genes such as mitochondrial mutations andOPA1gene sequencing should be performed first in single individuals presenting with optic neuropathy, even when dominant inheritance is not apparent.


Sign in / Sign up

Export Citation Format

Share Document