scholarly journals Parathyroid Hormone and Bone Mineral Density: A Mendelian Randomization Study

2020 ◽  
Vol 105 (11) ◽  
Author(s):  
Zihao Qu ◽  
Fangkun Yang ◽  
Jianqiao Hong ◽  
Wei Wang ◽  
Shigui Yan

Abstract Purpose Accumulating evidence implicates parathyroid hormone (PTH) in the development of osteoporosis. However, the causal effect of PTH on bone mineral density (BMD) remains unclear. Thus, this study is aimed at exploring the association between the concentrations of serum PTH and BMD. Methods The instrumental variables for PTH were selected from a large-scale genome-wide association study (GWAS; n = 29 155). Outcomes included BMD of the forearm (FA; n = 8143), femoral neck (FN; n = 33 297), lumbar spine (LS; n = 32 735), heel (HL; n = 394 929), and risk of fractures in these bones (n = 361 194). Furthermore, the BMD of 5 different age groups: 15 years or younger (n = 11 807), 15–30 (n = 4180), 30–45 (n = 10 062), 45–60 (n = 18 805), and 60 years or older (n = 22 504) were extracted from a GWAS meta-analysis study. The analyses were performed using the 2-sample Mendelian randomization method. Results Mendelian randomization analysis revealed that the level of serum PTH was inversely associated with BMD of FA (95% CI: -0.763 to -0.016), FN (95% CI: -0.669 to -0.304), and LS (95% CI: -0.667 to -0.243). A causal relationship between serum PTH levels and BMD was observed in individuals aged 30–45 (95% CI: -0.888 to -0.166), 45–60 (95% CI: -0.758 to -0.232), and over 60 years (95% CI: -0.649 to -0.163). Main Conclusions This study demonstrated that the concentrations of serum PTH is inversely associated with BMD of several bones. Further analysis revealed site- and age-specific correlations between serum PTH levels and BMD, which implies that the levels of serum PTH contribute to the development of osteoporosis.

2019 ◽  
Vol 49 (4) ◽  
pp. 1221-1235 ◽  
Author(s):  
Gloria Hoi-Yee Li ◽  
Ching-Lung Cheung ◽  
Philip Chun-Ming Au ◽  
Kathryn Choon-Beng Tan ◽  
Ian Chi-Kei Wong ◽  
...  

Abstract Background Low-density lipoprotein cholesterol (LDL-C) is suggested to play a role in osteoporosis but its association with bone metabolism remains unclear. Effects of LDL-C-lowering drugs on bone are also controversial. We aim to determine whether LDL-C is linked causally to bone mineral density (BMD) and assess the effects of LDL-C-lowering drugs on BMD. Methods Association between blood lipid levels and BMD was examined by epidemiological observation analyses in a US representative cohort NHANES III (n = 3638) and the Hong Kong Osteoporosis Study (HKOS; n = 1128). Two-sample Mendelian randomization (MR), employing genetic data from a large-scale genome-wide association study (GWAS) of blood lipids (n = 188 577), total body BMD (TB-BMD) (n = 66 628) and estimated BMD (eBMD) (n= 142 487), was performed to infer causality between LDL-C and BMD. Genetic proxies for LDL-C-lowering drugs were used to examine the drugs’ effects on BMD. Results In the NHANES III cohort, each standard deviation (SD) decrease in LDL-C was associated with a 0.045 SD increase in femoral neck BMD (95% CI: 0.009 − 0.081; P = 0.015). A similar increase in BMD was observed in the HKOS at femoral neck and lumbar spine. In MR analysis, a decrease in genetically predicted LDL-C was associated with an increase in TB-BMD {estimate per SD decrease, 0.038 [95% confidence interval (CI): 0.002 − 0.074]; P = 0.038} and eBMD [0.076 (0.042 − 0.111); P = 1.20x10−5]. Reduction in TB-BMD was causally associated with increased LDL-C [0.035 (0.033 − 0.066); P = 0.034]. Statins’ LDL-C-lowering proxies were associated with increased TB-BMD [0.18 (0.044 − 0.316); P = 9.600x10−3] and eBMD [0.143 (0.062 − 0.223); P = 5.165x10−4]. Conclusions Negative causal association exists between LDL-C level and BMD. Statins’ LDL-C-lowering effect increases BMD, suggesting their protective effect on bone.


2018 ◽  
Author(s):  
Jie Zheng ◽  
Marie-Jo Brion ◽  
John P. Kemp ◽  
Nicole M. Warrington ◽  
Maria-Carolina Borges ◽  
...  

AbstractStatin treatment increases bone mineral density (BMD) and reduces fracture risk, but the underlying mechanism is unclear. We used Mendelian randomization (MR) to assess whether this relation is explained by a specific effect in response to statin use, or by a general effect of lipid-lowering. We utilized 400 single nucleotide polymorphisms (SNPs) robustly associated with plasma lipid levels and results from a heel BMD GWAS (derived from quantitative ultrasound) in 426,824 individuals from the UK Biobank. We performed univariate and multivariable MR analyses of low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triglyceride levels on BMD. To test whether the effect of statins on BMD was mediated by lowering lipid levels, MR was repeated with and without SNPs in theHMGCRregion, the gene targeted by statins. Univariate MR analyses provided evidence for a causal effect of LDL-C on BMD (β= −0.060; −0.084 to −0.036; P = 4×10-6; standard deviation change in BMD per standard deviation change in LDL-C, with 95% CI), but not HDL or triglycerides. Multivariable MR analysis suggested that the effect of LDL-C on BMD was independent of HDL-C and triglycerides, and sensitivity analyses involving MR Egger and weighted median MR approaches suggested that the LDL-C results were robust to pleiotropy. MR analyses of LDL-C restricted to SNPs in theHMGCRregion showed similar effects on BMD(β= −0.083; −0.132 to −0.034; P = 0.001) to those excluding these SNPs (β= −0.063; −0.090 to −0.036; P = 8×10-6). Bidirectional MR analyses provided some evidence for a causal effect of BMD on plasma LDL-C levels. Our results suggest that effects of statins on BMD are at least partly due to their LDL-C lowering effect. Further studies are required to examine the potential role of modifying plasma lipid levels in treating osteoporosis.


2015 ◽  
Vol 30 (6) ◽  
pp. 985-991 ◽  
Author(s):  
Nicola Dalbeth ◽  
Ruth Topless ◽  
Tanya Flynn ◽  
Murray Cadzow ◽  
Mark J Bolland ◽  
...  

2019 ◽  
Author(s):  
Jing-yi Sun ◽  
Haihua Zhang ◽  
Yan Zhang ◽  
Longcai Wang ◽  
Jin Rok Oh ◽  
...  

AbstractObjectivesUntil recently, randomized controlled trials and meta-analyses have not demonstrated convincing conclusions regarding the association of calcium intake with bone mineral density (BMD). Until now, it remains unclear whether high serum calcium levels are causally associated with BMD. This study aimed to investigate the genetic association between serum calcium levels and BMD using a large-scale serum calcium GWAS dataset and four large-scale BMD GWAS datasets in individuals of European descent.MethodsWe performed a Mendelian randomization study to investigate the association of increased serum calcium levels with BMD using a large-scale serum calcium genome-wide association study (GWAS) dataset (including up to 61,079 individuals) and four large-scale BMD GWAS datasets (including minimum 4,180 individuals and maximum 142,487 individuals) regarding the total body, forearm, femoral neck, lumbar spine, and heel BMD. Here, we selected three Mendelian randomization methods including inverse-variance weighted meta-analysis (IVW), weighted median, and MR-Egger.ResultsIn specific site analysis, we found that increased serum calcium levels could reduce BMD at forearm (OR=0.59, 95% CI: 0.36-0.95, P=0.029) and lumbar spine (OR=0.65, 95% CI: 0.49-0.86, P=0.002). We did not identify any suggestive association of genetically increased serum calcium levels with BMD of total body, femoral neck, and heel BMD. In specific age stratum analysis, we found that genetically increased serum calcium levels were statistically significantly associated with reduced total body BMD in age stratum 60 or more years (OR=0.58, 95% CI: 0.41-0.82, P=0.002).ConclusionsWe provide genetic evidence that increased serum calcium levels could not improve BMD in the general population. The elevated serum calcium levels in generally healthy populations, especially adults older than 60 years, may even reduce the BMD, and further cause osteoporosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiyong Cui ◽  
Hui Feng ◽  
Baichuan He ◽  
Jinyao He ◽  
Yun Tian

BackgroundThis study aimed to explore the association between serum amino acids (AAs) levels and bone mineral density (BMD).MethodsWe performed a two-sample Mendelian randomization (MR) analysis to analyze the associations between the levels of eight AAs and BMD values by using summary-level genome-wide association study (GWAS) data. We applied the MR Steiger filtering method and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global test to check for and remove single nucleotide polymorphisms (SNPs) that were horizontally pleiotropic. The associations were estimated with the inverse variance weighted (IVW), MR-Egger, weighted median and MR Robust Adjusted Profile Score (MR.RAPS) methods.ResultsOur study found that genetically increased isoleucine (Ile) [IVW: effect = 0.1601, 95% confidence interval (CI) = 0.0604 ~ 0.2597, p = 0.0016] and valine (Val) levels (IVW: effect = 0.0953, 95% CI = 0.0251 ~ 0.1655, p = 0.0078) were positively associated with total body BMD (TB-BMD). The results also revealed that genetically increased tyrosine (Tyr) levels were negatively associated with TB-BMD (IVW: effect = -0.1091, 95% CI = -0.1863 ~ -0.0320, p = 0.0055).ConclusionsIn this study, associations between serum AA levels and BMD were established. These findings underscore the important role that serum AAs play in the development of osteoporosis and provide evidence that osteoporosis can be prevented and treated by the intake of certain AAs.


2008 ◽  
Vol 158 (3) ◽  
pp. 401-409 ◽  
Author(s):  
Monica Sneve ◽  
Nina Emaus ◽  
Ragnar Martin Joakimsen ◽  
Rolf Jorde

ObjectiveTo explore the relation between serum parathyroid hormone (PTH) and bone mineral density (BMD), adjusted for lifestyle factors including smoking.DesignCross-sectional study.MethodsThe Tromsø Study is a population-based study performed for the fifth time in 2001. Serum PTH was measured and the subjects filled in a questionnaire covering lifestyle factors. BMD at the hip, distal and ultradistal forearm was measured.ResultsComplete datasets were available in 1442 men and 1368 women. Age, body mass index and serum PTH were strong predictors of BMD level at the hip in both genders. No significant relation was seen between serum PTH and BMD at the distal or ultradistal forearm. When smokers and non-smokers were analysed separately, the relation between PTH and BMD at the hip was significant in current non-smokers only. In males, current non-smokers had significantly higher BMD at all three measurement sites compared with current smokers. Male former smokers had values in between current and never smokers. There was a significant and negative relation between number of years smoked and BMD at the hip. In male former smokers, there was an increase in BMD with increasing years since smoking cessation.ConclusionSerum PTH is negatively associated with BMD at the hip, and the relation seems to be masked, or diminished, by smoking. Smoking reduces BMD at the hip, distal and ultradistal forearm in males, and the effect appears to be mainly time and not dose dependent.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin He ◽  
Lifeng Yin ◽  
Muzi Zhang ◽  
Qiong Lyu ◽  
Zhengxue Quan ◽  
...  

BackgroundHypertension may have some association with osteoporosis. This Mendelian randomization (MR) study aimed to explore the causal effect of blood pressure (BP) on bone mineral density (BMD), fall, and fracture.MethodsWe used the genome-wide association study (GWAS) summary data among 330,956 European-descent individuals to identify 107 single-nucleotide polymorphisms (SNPs) as the instrumental variables of BP. MR analyses of these instruments were performed on 53,236 European individuals for the association with forearm BMD (FA-BMD), femoral neck BMD (FN-BMD), and lumbar spine BMD (LS-BMD); 451,179 European individuals for fall susceptibility; and up to 1.2 million individuals from European descent for fracture. Conventional inverse variance weighted (IVW) method was adopted to obtain the causal estimates of BP on different outcomes, while weighted median, MR-egger, and MR pleiotropy residual sum and outlier (MR-PRESSO) test were used for sensitivity analyses.ResultsGenetically high pulse pressure (PP) could significantly improve FA-BMD (beta-estimate: 0.038, 95% confidence interval [CI]: 0.013 to 0.063, SE:0.013, P-value=0.003<Bonferroni correction P) in the IVW analysis, indicating that 1-SD increase in PP was associated with the improvement in FA-BMD levels by 0.038 g/cm2 (95% CI: 0.013 to 0.063). This positive finding was also confirmed by weighted-median analysis (beta-estimate: 0.034, 95% CI: 0.000 to 0.067, SE:0.017, P-value=0.046) and MR-Egger analysis (beta-estimate: 0.117, 95% CI: 0.026 to 0.208, SE:0.046, P-value=0.011). However, there was no remarkable MR association between BP and other outcomes (i.e., FN-BMD, LS-BMD, fall, and fracture).ConclusionsOur findings reveal a potentially causal relationship between high PP and improved FA-BMD, which may provide new sights for the treatment of osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document