The regulation of porcine theca cell proliferation in vitro: synergistic actions of epidermal growth factor and platelet-derived growth factor

Endocrinology ◽  
1992 ◽  
Vol 131 (2) ◽  
pp. 689-697 ◽  
Author(s):  
J. V. May
2014 ◽  
Vol 307 (10) ◽  
pp. L800-L810 ◽  
Author(s):  
Heather M. Brechbuhl ◽  
Bilan Li ◽  
Russell W. Smith ◽  
Susan D. Reynolds

ERB family receptors (EGFR, ERB-B2, ERB-B3, and ERB-B4) regulate epithelial cell function in many tissue types. In the human airway epithelium, changes in ERB receptor expression are associated with epithelial repair defects. However, the specific role(s) played by ERB receptors in repair have not been determined. We aimed to determine whether ERB receptors regulate proliferation of the tracheobronchial progenitor, the basal cell. Receptor tyrosine kinase arrays were used to evaluate ERB activity in normal and naphthalene (NA)-injured mouse trachea and in air-liquid interface cultures. Roles for epidermal growth factor (EGF), EGFR, and ERB-B2 in basal cell proliferation were evaluated in vitro. NA injury and transgenic expression of an EGFR-dominant negative (DN) receptor were used to evaluate roles for EGFR signaling in vivo. EGFR and ERB-B2 were active in normal and NA-injured trachea and were the only active ERB receptors detected in proliferating basal cells in vitro. EGF was necessary for basal cell proliferation in vitro. The EGFR inhibitor, AG1478, decreased proliferation by 99, and the Erb-B2 inhibitor, AG825, decreased proliferation by ∼66%. In vivo, EGFR-DN expression in basal cells significantly decreased basal cell proliferation after NA injury. EGF and EGFR are necessary for basal cell proliferation. The EGFR/EGFR homo- and the EGFR/ERB-B2 heterodimer account for ∼34 and 66%, respectively, of basal cell proliferation in vitro. Active EGFR is necessary for basal cell proliferation after NA injury. We conclude that EGFR activation is necessary for mouse basal cell proliferation and normal epithelial repair.


2020 ◽  
Vol 20 (18) ◽  
pp. 1628-1639
Author(s):  
Sergi Gómez-Ganau ◽  
Josefa Castillo ◽  
Andrés Cervantes ◽  
Jesus Vicente de Julián-Ortiz ◽  
Rafael Gozalbes

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


1986 ◽  
Vol 86 (1) ◽  
pp. 47-55
Author(s):  
W. Engstrom

The effects of epidermal growth factor (EGF) on clones from a human embryonal carcinoma-derived cell line (Tera-2) have been studied. Cells were plated at clonal densities, whereafter the effects of serum and EGF on cell locomotion and cell proliferation were examined. The addition of 50 ngEGF ml-1 resulted in increased migration, as judged by increased colony diameter in the presence of EGF. However, the effect of EGF on cell locomotion was rarely accompanied by any effect on cell proliferation. It was concluded that EGF exerts a preferential effect on cell migration in human embryonal carcinoma cells in vitro.


Author(s):  
Liqing Zhang ◽  
Jianjiang Xu ◽  
Gaodi Yang ◽  
Heng Li ◽  
Xiuxia Guo

Recent studies have demonstrated that miR-202 is associated with several types of cancer; however, the expression and function of miR-202 have not been investigated in bladder cancer. We analyzed the expression of miR-202 in bladder cancer tissues and adjacent noncancerous tissues. The effect of miR-202 on the proliferation, migration, and invasion was evaluated by in vitro assays. The target gene of miR-202 was assessed by luciferase reporter assay. In this study, miR-202 was found to be significantly downregulated in bladder cancer cell lines and tissues and was highly correlated with the T classification, N classification, grade, and recurrence. Ectopic expression of miR-202 suppressed cell viability, colony formation, cell migration, and invasion in vitro and inhibited xenograft tumor growth in vivo. Inversely, downregulation of miR-202 had contradictory effects. The 3′-untranslated region (3′-UTR) of epidermal growth factor receptor (EGFR) was identified as a direct target of miR-202 using luciferase reporter assays, and knockdown of EGFR enhanced miR-202-inhibited cell proliferation, migration, and invasion. In conclusion, miR-202 suppresses bladder cancer carcinogenesis and progression by targeting EGFR, thereby representing a potential target for miRNA-based therapy for bladder cancer in the future.


Sign in / Sign up

Export Citation Format

Share Document