scholarly journals Gonadotropin-Releasing Hormone Induces Actin Cytoskeleton Remodeling and Affects Cell Migration in a Cell-Type-Specific Manner in TSU-Pr1 and DU145 Cells

Endocrinology ◽  
2006 ◽  
Vol 147 (1) ◽  
pp. 530-542 ◽  
Author(s):  
Masahiro Enomoto ◽  
Mari Utsumi ◽  
Min Kyun Park
2009 ◽  
Vol 60 (6) ◽  
pp. 1605-1617 ◽  
Author(s):  
A. Kasprowicz ◽  
A. Szuba ◽  
D. Volkmann ◽  
F. Baluska ◽  
P. Wojtaszek

2000 ◽  
Vol 191 (8) ◽  
pp. 1281-1292 ◽  
Author(s):  
Raelene J. Grumont ◽  
Steve Gerondakis

In lymphocytes, the Rel transcription factor is essential in establishing a pattern of gene expression that promotes cell proliferation, survival, and differentiation. Here we show that mitogen-induced expression of interferon (IFN) regulatory factor 4 (IRF-4), a lymphoid-specific member of the IFN family of transcription factors, is Rel dependent. Consistent with IRF-4 functioning as a repressor of IFN-induced gene expression, the absence of IRF-4 expression in c-rel−/− B cells coincided with a greater sensitivity of these cells to the antiproliferative activity of IFNs. In turn, enforced expression of an IRF-4 transgene restored IFN modulated c-rel−/− B cell proliferation to that of wild-type cells. This cross-regulation between two different signaling pathways represents a novel mechanism that Rel/nuclear factor κB can repress the transcription of IFN-regulated genes in a cell type–specific manner.


2020 ◽  
Vol 62 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Yuriko Goto ◽  
Miho Ibi ◽  
Hirotaka Sato ◽  
Junichi Tanaka ◽  
Rika Yasuhara ◽  
...  

2015 ◽  
Author(s):  
Flore Nallet-Staub ◽  
Xueqian Yin ◽  
Cristèle Gilbert ◽  
Véronique Marsaud ◽  
Saber Ben Mimoun ◽  
...  

2015 ◽  
Vol 407 (2) ◽  
pp. 195-210 ◽  
Author(s):  
Dongying Chen ◽  
Xia Wang ◽  
Dong Liang ◽  
Julie Gordon ◽  
Ashok Mittal ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Estefania Lozano-Velasco ◽  
Jennifer Galiano-Torres ◽  
Alvaro Jodar-Garcia ◽  
Amelia E. Aranega ◽  
Diego Franco

MicroRNAs are noncoding RNAs of approximately 22–24 nucleotides which are capable of interacting with the 3′ untranslated region of coding RNAs (mRNAs), leading to mRNA degradation and/or protein translation blockage. In recent years, differential microRNA expression in distinct cardiac development and disease contexts has been widely reported, yet the role of individual microRNAs in these settings remains largely unknown. We provide herein evidence of the role of miR-27 and miR-125 regulating distinct muscle-enriched transcription factors. Overexpression of miR-27 leads to impair expression ofMstnandMyocdin HL1 atrial cardiomyocytes but not in Sol8 skeletal muscle myoblasts, while overexpression of miR-125 resulted in selective upregulation ofMef2din HL1 atrial cardiomyocytes and downregulation in Sol8 cells. Taken together our data demonstrate that a single microRNA, that is, miR-27 or miR-125, can selectively upregulate and downregulate discrete number of target mRNAs in a cell-type specific manner.


Sign in / Sign up

Export Citation Format

Share Document