scholarly journals Cyclooxygenases in Rat Leydig Cells: Effects of Luteinizing Hormone and Aging

Endocrinology ◽  
2007 ◽  
Vol 148 (2) ◽  
pp. 735-742 ◽  
Author(s):  
Haolin Chen ◽  
Lindi Luo ◽  
June Liu ◽  
Barry R. Zirkin

Previous studies suggested that increased Leydig cell cyclooxygenase (COX)2 expression may be involved in the reduced testosterone production that characterizes aged Leydig cells. Our objective herein was to further elucidate the relationships among LH stimulation, Leydig cell COX2 and COX1 expression, aging, and testosterone production. Incubation of Leydig cells from young or aged rats with LH or dibutyryl cAMP resulted in increases in both intracellular COX2 protein expression and testosterone production. COX1 expression did not respond to LH or dibutyryl cAMP. Incubation of adult cells with a protein kinase A inhibitor suppressed the stimulatory effects of LH on COX2 and testosterone production. Short-term incubation of Leydig cells with TGF-α or IL-1β also increased COX2 protein levels; IGF-I had no effect. In vivo, LH also was found to stimulate both COX2 and testosterone, but not COX1. As reported previously, COX2 expression was greater in old than in young cells, and old Leydig cells responded to inhibition of COX2 in vitro with increased testosterone production. However, the effects of the COX2 inhibitors were not restricted to old cells; young Leydig cells also responded to COX2 inhibition with increased testosterone production. This and the observation that the incubation of young or old cells with LH resulted in increased COX2 and testosterone production in both cases suggests that the relationship between COX2 and testosterone production is not unique to aged Leydig cells. Moreover, the close correlation between increases in COX2 and testosterone in LH-stimulated young and aged Leydig cells is difficult to reconcile with the contention that the increased expression of COX2 in aged cells is responsible for age-related suppression of Leydig cell testosterone production.

2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


2020 ◽  
Vol 35 (12) ◽  
pp. 2663-2676
Author(s):  
Valentina Mularoni ◽  
Valentina Esposito ◽  
Sara Di Persio ◽  
Elena Vicini ◽  
Gustavo Spadetta ◽  
...  

Abstract STUDY QUESTION What are the consequences of ageing on human Leydig cell number and hormonal function? SUMMARY ANSWER Leydig cell number significantly decreases in parallel with INSL3 expression and Sertoli cell number in aged men, yet the in vitro Leydig cell androgenic potential does not appear to be compromised by advancing age. WHAT IS KNOWN ALREADY There is extensive evidence that ageing is accompanied by decline in serum testosterone levels, a general involution of testis morphology and reduced spermatogenic function. A few studies have previously addressed single features of the human aged testis phenotype one at a time, but mostly in tissue from patients with prostate cancer. STUDY DESIGN, SIZE, DURATION This comprehensive study examined testis morphology, Leydig cell and Sertoli cell number, steroidogenic enzyme expression, INSL3 expression and androgen secretion by testicular fragments in vitro. The majority of these endpoints were concomitantly evaluated in the same individuals that all displayed complete spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS Testis biopsies were obtained from 15 heart beating organ donors (age range: 19–85 years) and 24 patients (age range: 19–45 years) with complete spermatogenesis. Leydig cells and Sertoli cells were counted following identification by immunohistochemical staining of specific cell markers. Gene expression analysis of INSL3 and steroidogenic enzymes was carried out by qRT-PCR. Secretion of 17-OH-progesterone, dehydroepiandrosterone, androstenedione and testosterone by in vitro cultured testis fragments was measured by LC-MS/MS. All endpoints were analysed in relation to age. MAIN RESULTS AND THE ROLE OF CHANCE Increasing age was negatively associated with Leydig cell number (R = −0.49; P < 0.01) and concomitantly with the Sertoli cell population size (R= −0.55; P < 0.001). A positive correlation (R = 0.57; P < 0.001) between Sertoli cell and Leydig cell numbers was detected at all ages, indicating that somatic cell attrition is a relevant cellular manifestation of human testis status during ageing. INSL3 mRNA expression (R= −0.52; P < 0.05) changed in parallel with Leydig cell number and age. Importantly, steroidogenic capacity of Leydig cells in cultured testis tissue fragments from young and old donors did not differ. Consistently, age did not influence the mRNA expression of steroidogenic enzymes. The described changes in Leydig cell phenotype with ageing are strengthened by the fact that the different age-related effects were mostly evaluated in tissue from the same men. LIMITATIONS, REASONS FOR CAUTION In vitro androgen production analysis could not be correlated with in vivo hormone values of the organ donors. In addition, the number of samples was relatively small and there was scarce information about the concomitant presence of potential confounding variables. WIDER IMPLICATIONS OF THE FINDINGS This study provides a novel insight into the effects of ageing on human Leydig cell status. The correlation between Leydig cell number and Sertoli cell number at any age implies a connection between these two cell types, which may be of particular relevance in understanding male reproductive disorders in the elderly. However aged Leydig cells do not lose their in vitro ability to produce androgens. Our data have implications in the understanding of the physiological role and regulation of intratesticular sex steroid levels during the complex process of ageing in humans. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from Prin 2010 and 2017. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.


2003 ◽  
Vol 77 (5) ◽  
pp. 3297-3300 ◽  
Author(s):  
Ronan Le Goffic ◽  
Thomas Mouchel ◽  
Annick Ruffault ◽  
Jean-Jacques Patard ◽  
Bernard Jégou ◽  
...  

ABSTRACT Mumps virus is responsible for sterility. Here, we show that the mumps virus infects Leydig cells in vitro and totally inhibits testosterone secretion and that ribavirin in mumps virus-infected Leydig cell cultures completely restores testosterone production. Moreover, we show that gamma interferon-induced protein 10 (IP-10) is highly expressed by mumps virus-infected Leydig cells and that ribavirin does not block IP-10 production.


2005 ◽  
Vol 187 (1) ◽  
pp. 117-124 ◽  
Author(s):  
K Svechnikov ◽  
V Supornsilchai ◽  
M-L Strand ◽  
A Wahlgren ◽  
D Seidlova-Wuttke ◽  
...  

Procymidone is a fungicide with anti-androgenic properties, widely used to protect fruits from fungal infection. Thereby it contaminates fruit products prepared for human consumption. Genistein-containing soy products are increasingly used as food additives with health-promoting properties. Therefore we examined the effects of long-term dietary administration (3 months) of the anti-androgen procymidone (26.4 mg/animal per day) or the phytoestrogen genistein (21.1 mg/animal per day) to rats on the pituitary-gonadal axis in vivo, as well as on Leydig cell steroidogenesis and on spermatogenesis ex vivo. The procymidone-containing diet elevated serum levels of LH and testosterone and, furthermore, Leydig cells isolated from procymidone-treated animals displayed an enhanced capacity for producing testosterone in response to stimulation by hCG or dibutyryl cAMP, as well as elevated expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450 scc) and cytochrome P450 17α (P450c17). In contrast, the rate of DNA synthesis during stages VIII and IX of spermatogenesis in segments of seminiferous tubules isolated from genistein-treated rats was decreased without accompanying changes in the serum level of either LH or testosterone. Nonetheless, genistein did suppress the ex vivo steroidogenic response of Leydig cells to hCG or dibutyryl cAMP by down-regulating their expression of P450 scc. Considered together, our present findings demonstrate that long-term dietary administration of procymidone or genistein to rats exerts different effects on the pituitary–gonadal axis in vivo and on Leydig cell steroidogenesis ex vivo. Possibly as a result of disruption of hormonal feedback control due to its anti-androgenic action, procymidone activates this endocrine axis, thereby causing hyper-gonadotropic activation of testicular steroidogenesis. In contrast, genistein influences spermatogenesis and significantly inhibits Leydig cell steroidogenesis ex vivo without altering the serum level of either LH or testosterone.


1984 ◽  
Vol 102 (3) ◽  
pp. 319-327 ◽  
Author(s):  
R. M. Sharpe ◽  
I. Cooper ◽  
D. G. Doogan

ABSTRACT Adult rats were made unilaterally cryptorchid (UCD) and 6–7 weeks later Leydig cells were isolated from the scrotal and abdominal testes and their capacity to secrete testosterone in vitro was compared. Basal testosterone production by Leydig cells from the abdominal testes of UCD rats was lowered, compared with cells from the contralateral scrotal testes, whilst their responsiveness to both human chorionic gonadotrophin and an LH releasing hormone agonist was enhanced two- to threefold (P< 0·001) compared both with cells from the contralateral scrotal testes and with cells isolated from untreated rats of the same age. In the UCD rats, concentrations of testosterone in testicular interstitial fluid (IF) were reduced (P< 0·001) by 70–90% in abdominal, compared with scrotal, testes. A similar reduction was evident in the levels of testosterone in spermatic venous blood, and both this decrease and that in IF levels of testosterone varied according to the degree of testicular involution. The ontogeny of the above changes was investigated. After induction of unilateral cryptorchidism, the weight of the abdominal compared with the scrotal testis declined slowly, such that by day 5 there was only a 25% reduction in weight compared with a 70% reduction by day 40. In contrast, the levels of testosterone in IF from abdominal testes declined rapidly, such that by day 5 an 80% reduction was attained, compared with scrotal testes, with little further change by day 40. Hormone-stimulated testosterone production by Leydig cells isolated from the abdominal testes was unchanged or marginally reduced over the first 3 days compared with cells from the scrotal testes, but by day 5 there was a significant increase in responsiveness; this increase was of smaller magnitude than that evident at day 40. These results suggest a possible association between the fall in intratesticular levels of testosterone induced by unilateral cryptorchidism and the Leydig cell hypertrophy and hyper-responsiveness that occurs in the same testes. The implications with respect to altered Sertoli–Leydig cell interaction are discussed. J. Endocr. (1984) 102, 319–327


Reproduction ◽  
2010 ◽  
Vol 140 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Xiufeng Wu ◽  
Ramamani Arumugam ◽  
Ningning Zhang ◽  
Mary M Lee

Postnatal Leydig cell (LC) development in mice has been assumed empirically to resemble that of rats, which have characteristic hormonal profiles at well-defined maturational stages. To characterize the changes in LC function and gene expression in mice, we examined reproductive hormone expression from birth to 180 days, and quantified in vivo and in vitro production of androgens during sexual maturation. Although the overall plasma androgen and LH profiles from birth through puberty were comparable to that of rats, the timing of developmental changes in androgen production and steroidogenic capacity of isolated LCs differed. In mice, onset of androgen biosynthetic capacity, distinguished by an acute rise in androstenedione and testosterone production and an increased expression of the steroidogenic enzymes, cytochrome P450 cholesterol side-chain cleavage enzyme and 17α-hydroxylase, occurred at day 24 (d24) rather than at d21 as reported in rats. Moreover, in contrast to persistently high testosterone production by pubertal and adult rat LCs, testosterone production was maximal at d45 in mice, and then declined in mature LCs. The murine LCs also respond more robustly to LH stimulation, with a greater increment in LH-stimulated testosterone production. Collectively, these data suggest that the mouse LC lineage has a delayed onset, and that it has an accelerated pace of maturation compared with the rat LC lineage. Across comparable maturational stages, LCs exhibit species-specific developmental changes in enzyme expression and capacity for androgen production. Our results demonstrate distinct differences in LC differentiation between mice and rats, and provide informative data for assessing reproductive phenotypes of recombinant mouse models.


1997 ◽  
Vol 155 (1) ◽  
pp. 87-92 ◽  
Author(s):  
DE Brigham ◽  
G Little ◽  
YO Lukyanenko ◽  
JC Hutson

We undertook the present studies to determine if clodronate-containing liposomes have direct effects on Leydig cells. Macrophages and Leydig cells were isolated and maintained separately in culture. Following treatment with clodronate-containing liposomes, macrophages were killed in a dose-response fashion over a range of 5-200 microliters liposomes. By comparison, a 500 microliters dose was required to kill Leydig cells, but this was not dependent upon clodronate since liposomes containing buffer elicited an identical response. The concentration of testosterone in medium from Leydig cells treated with clodronate-containing liposomes was significantly reduced compared with untreated cells. However, we subsequently found that liposomes can adsorb testosterone. Therefore, testosterone production was determined at various times following removal of liposomes from Leydig cells, thereby circumventing this complication. It was found that testosterone production was not altered by liposomes under these conditions. Finally, free clodronate had no effect on testosterone production, even at doses representing the amount present within the 500 microliters dose of liposomes. In summary, clodronate-containing liposomes killed testicular macrophages at a far smaller dose than required to kill Leydig cells. Most importantly, neither liposomes no free clodronate had a direct effect on testosterone production. Thus, clodronate-containing liposomes represent a valuable tool to study Leydig cell-macrophage interactions.


2009 ◽  
Vol 297 (5) ◽  
pp. E1039-E1045 ◽  
Author(s):  
Guey-Shyang Hwang ◽  
Szu-Tah Chen ◽  
Te-Jung Chen ◽  
Shyi-Wu Wang

The aim of this study was to explore the effect and action mechanisms of intermittent hypoxia on the production of testosterone both in vivo and in vitro. Male rats were housed in a hypoxic chamber (12% O2 + 88% N2, 1.5 l/ml) 8 h/day for 4 days. Normoxic rats were used as control. In an in vivo experiment, hypoxic and normoxic rats were euthanized and the blood samples collected. In the in vitro experiment, the enzymatically dispersed rat Leydig cells were prepared and challenged with forskolin (an adenylyl cyclase activator, 10−4 M), 8-Br-cAMP (a membrane-permeable analog of cAMP, 10−4 M), hCG (0.05 IU), the precursors of the biosynthesis testosterone, including 25-OH-C (10−5 M), pregnenolone (10−7 M), progesterone (10−7 M), 17-OH-progesterone (10−7 M), and androstendione (10−7-10−5 M), nifedipine (L-type Ca2+ channel blocker, 10−6-10−4 M), nimodipine (L-type Ca2+ channel blocker, 10−5 M), tetrandrine (L-type Ca2+ channel blocker, 10−5 M), and NAADP (calcium-signaling messenger causing release of calcium from intracellular stores, 10−6-10−4 M). The concentrations of testosterone in plasma and medium were measured by radioimmunoassay. The level of plasma testosterone in hypoxic rats was higher than that in normoxic rats. Enhanced testosterone production was observed in rat Leydig cells treated with hCG, 8-Br-cAMP, or forskolin in both normoxic and hypoxic conditions. Intermittent hypoxia resulted in a further increase of testosterone production in response to the testosterone precursors. The activity of 17β-hydroxysteroid dehydrogenase was stimulated by the treatment of intermittent hypoxia in vitro. The intermittent hypoxia-induced higher production of testosterone was accompanied with the influx of calcium via L-type calcium channel and the increase of intracellular calcium via the mechanism of calcium mobilization. These results suggested that the intermittent hypoxia stimulated the secretion of testosterone at least in part via stimulatory actions on the activities of adenylyl cyclase, cAMP, L-type calcium channel, and steroidogenic enzymes.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2612-2619 ◽  
Author(s):  
Haolin Chen ◽  
Angela S. Pechenino ◽  
June Liu ◽  
Matthew C. Beattie ◽  
Terry R. Brown ◽  
...  

Changes in the oxidant/antioxidant environment of aging Leydig cells have been shown to be correlated with the reduced ability of these cells to produce testosterone. With this in mind, we hypothesized that the experimental depletion of glutathione (GSH), an abundant Leydig cell intracellular antioxidant, might result in reduced testosterone production. Incubation of Leydig cells isolated from the testes of adult Brown Norway rats with buthionine sulfoximine (BSO) reduced GSH content by more than 70% and testosterone production by about 40%. The antioxidants vitamin E, N-tert-butyl-α-phenylnitrone and Trolox countered BSO’s effect on steroidogenesis but not on GSH depletion. Together, BSO and glutathione ethyl ester maintained intracellular GSH and also testosterone production, whereas 1,2-dithiole-3-thione, which increases intracellular GSH, increased testosterone production. In vivo studies also were conducted. Young (4 month old) and old (24 month old) rats were injected with BSO twice a day for 7 d, after which Leydig cells were isolated and analyzed in vitro. BSO treatment reduced Leydig cell GSH content by 70% and the ability of the Leydig cells to produce testosterone by more than 50%. As with aging, decreases were seen in LH-stimulated cAMP production, steroidogenic acute regulatory protein, cholesterol side-chain cleavage, 3β-hydroxysteroid dehydrogenase, and 17α-hydroxylase/17,20-lyase. The results of these studies, taken together, are consistent with the hypothesis that alteration in the oxidant/antioxidant environment may play a significant, causative role in the age-related reduced ability of Leydig cells to produce testosterone.


Life Sciences ◽  
2003 ◽  
Vol 73 (16) ◽  
pp. 2127-2136 ◽  
Author(s):  
Chih-Chao Hsu ◽  
Yuan-Li Huang ◽  
Shaw-Jeng Tsai ◽  
Chia-Chin Sheu ◽  
Bu-Miin Huang

Sign in / Sign up

Export Citation Format

Share Document