scholarly journals Type 3 Deiodinase Deficiency Results in Functional Abnormalities at Multiple Levels of the Thyroid Axis

Endocrinology ◽  
2007 ◽  
Vol 148 (12) ◽  
pp. 5680-5687 ◽  
Author(s):  
Arturo Hernandez ◽  
M. Elena Martinez ◽  
Xiao-Hui Liao ◽  
Jacqueline Van Sande ◽  
Samuel Refetoff ◽  
...  

The type 3 deiodinase (D3) is a selenoenzyme that inactivates thyroid hormones and is highly expressed during development and in the adult central nervous system. We have recently observed that mice lacking D3 activity (D3KO mice) develop perinatal thyrotoxicosis followed in adulthood by a pattern of hormonal levels that is suggestive of central hypothyroidism. In this report we describe the results of additional studies designed to investigate the regulation of the thyroid axis in this unique animal model. Our results demonstrate that the thyroid and pituitary glands of D3KO mice do not respond appropriately to TSH and TRH stimulation, respectively. Furthermore, after induction of severe hypothyroidism by antithyroid treatment, the rise in serum TSH in D3KO mice is only 15% of that observed in wild-type mice. In addition, D3KO animals rendered severely hypothyroid fail to show the expected increase in prepro-TRH mRNA in the paraventricular nucleus of the hypothalamus. Finally, treatment with T3 results in a serum T3 level in D3KO mice that is much higher than that in wild-type mice. This is accompanied by significant weight loss and lethality in mutant animals. In conclusion, the absence of D3 activity results in impaired clearance of T3 and significant defects in the mechanisms regulating the thyroid axis at all levels: hypothalamus, pituitary, and thyroid.

Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1180-1191 ◽  
Author(s):  
Xiao-Hui Liao ◽  
Caterina Di Cosmo ◽  
Alexandra M. Dumitrescu ◽  
Arturo Hernandez ◽  
Jacqueline Van Sande ◽  
...  

Mice deficient in the thyroid hormone (TH) transporter Mct8 (Mct8KO) have increased 5′-deiodination and impaired TH secretion and excretion. These and other unknown mechanisms result in the low-serum T4, high T3, and low rT3 levels characteristic of Mct8 defects. We investigated to what extent each of the 5′-deiodinases (D1, D2) contributes to the serum TH abnormalities of the Mct8KO by generating mice with all combinations of Mct8 and D1 and/or D2 deficiencies and comparing the resulting eight genotypes. Adding D1 deficiency to that of Mct8 corrected the serum TH abnormalities of Mct8KO mice, normalized brain T3 content, and reduced the impaired expression of TH-responsive genes. In contrast, Mct8D2KO mice maintained the serum TH abnormalities of Mct8KO mice. However, the serum TSH level increased 27-fold, suggesting a severely impaired hypothalamo-pituitary-thyroid axis. The brain of Mct8D2KO manifested a pattern of more severe impairment of TH action than Mct8KO alone. In triple Mct8D1D2KO mice, the markedly increased serum TH levels produced milder brain defect than that of Mct8D2KO at the expense of more severe liver thyrotoxicosis. Additionally, we observed that mice deficient in D2 had an unexplained marked reduction in the thyroid growth response to TSH. Our studies on these eight genotypes provide a unique insight into the complex interplay of the deiodinases in the Mct8 defect and suggest that D1 contributes to the increased serum T3 in Mct8 deficiency, whereas D2 mainly functions locally, converting T4 to T3 to compensate for distinct cellular TH depletion in Mct8KO mice.


1987 ◽  
Vol 114 (1) ◽  
pp. 41-46 ◽  
Author(s):  
H. Hohtari ◽  
A. Pakarinen ◽  
A. Kauppila

Abstract. The effects of endurance training and season on the function of the anterior pituitary-thyroid axis were studied in 18 female runners and their 12 controls, and in 13 joggers and their 11 controls in Northern Finland, with a large seasonal difference in environmental factors. The serum concentrations of thyrotropin (TSH), thyroxine (T4), free thyroxine (fT4), triiodothyronine (T3), thyroxine binding globulin (TBG) and oestradiol (E2) were measured during one menstrual cycle in the light training season (autumn) and in the hard training season (spring). The responses of TSH to intravenous TRH stimulation were also measured in the luteal phase of the cycle during the hard training season. Endurance running did not affect the basal or TRH-stimulated serum TSH concentrations, while those of T4 and fT4 in runners were lowered in both seasons and that of T3 in the light training season in relation to control subjects. The serum concentrations of TBG were also significantly lower in runners than their controls in the luteal phase in both seasons. The effect of jogging on thyroid hormones was less pronounced. Serum concentrations of TSH, T4, fT4, T3 and TBG were generally slightly higher in spring than in autumn. Strenuous endurance training seems to have minor changes on the function of the thyroid gland. Depressed T4 levels in runners may rather be due to lowered TBG levels than due to direct effect of training. In spring the function of anterior pituitary-thyroid axis is more active than in autumn.


2006 ◽  
Vol 191 (2) ◽  
pp. 459-463 ◽  
Author(s):  
K J Oliveira ◽  
G S M Paula ◽  
R H Costa-e-Sousa ◽  
L L Souza ◽  
D C Moraes ◽  
...  

Peptide YY (PYY)3-36 is a gut-derived hormone, with a proposed role in central mediation of postprandial satiety signals, as well as in long-term energy balance. In addition, recently, the ability of the hormone to regulate gonadotropin secretion, acting at pituitary and at hypothalamus has been reported. Here, we examined PYY3-36 effects on thyrotropin (TSH) secretion, both in vitro and in vivo. PYY3-36-incubated rat pituitary glands showed a dose-dependent decrease in TSH release, with 44 and 62% reduction at 10−8 and 10−6 M (P < 0.05 and P < 0.001 respectively), and no alteration in TSH response to thyrotropin-releasing hormone. In vivo, PYY3-36 i.p. single injection in the doses of 3 or 30 cg/kg body weight, administered to rats fed ad libitum, was not able to change serum TSH after 15 or 30 min. However, in fasted rats, PYY3-36 at both doses elicited a significant rise (approximately twofold increase, P < 0.05) in serum TSH observed 15 min after the hormone injection. PYY3-36 treatment did not modify significantly serum T4, T3, or leptin. Therefore, in the present paper, we have demonstrated that the gut hormone PYY3-36 acts directly on the pituitary gland to inhibit TSH release, and in the fasting situation, in vivo, when serum PYY3-36 is reduced, the activity of thyroid axis is reduced as well. In such a situation, systemically injected PYY3-36 was able to acutely activate the thyrotrope axis, suggesting a new role for PYY3-36 as a regulator of the hypothalamic–pituitary–thyroid axis.


2007 ◽  
Vol 92 (6) ◽  
pp. 2378-2381 ◽  
Author(s):  
Jurgen Jansen ◽  
Edith C. H. Friesema ◽  
Monique H. A. Kester ◽  
Carmelina Milici ◽  
Maarten Reeser ◽  
...  

Abstract Context: T3 action in neurons is essential for brain development. Recent evidence indicates that monocarboxylate transporter 8 (MCT8) is important for neuronal T3 uptake. Hemizygous mutations have been identified in the X-linked MCT8 gene in boys with severe psychomotor retardation and elevated serum T3 levels. Objective: The objective of this study was to determine the functional consequences of MCT8 mutations regarding transport of T3. Design: MCT8 function was studied in wild-type or mutant MCT8-transfected JEG3 cells by analyzing: 1) T3 uptake, 2) T3 metabolism in cells cotransfected with human type 3 deiodinase, 3) immunoblotting, and 4) immunocytochemistry. Results: The mutations identified in MCT8 comprise four deletions (24.5 kb, 2.4 kb, 14 bp, and 3 bp), three missense mutations (Ala224Val, Arg271His, and Leu471Pro), a nonsense mutation (Arg245stop), and a splice site mutation (94 amino acid deletion). All tested mutants were inactive in uptake and metabolism assays, except MCT8 Arg271His, which showed approximately 20% activity vs. wild-type MCT8. Conclusion: These findings support the hypothesis that the severe psychomotor retardation and elevated serum T3 levels in these patients are caused by inactivation of the MCT8 transporter, preventing action and metabolism of T3 in central neurons.


1997 ◽  
pp. 537-544 ◽  
Author(s):  
H Liang ◽  
CE Juge-Aubry ◽  
M O'Connell ◽  
AG Burger

In order to compare the effect of 3,5,3'-triiodothyroacetic acid (TRIAC) with those of triiodothyronine (T3) and thyroxine (T4), severely hypothyroid rats (n=56) were infused over 13 days with 1, 2 or 4 nmol/100 g body weight (BW) per day of T3 or 2, 4 or 8 nmol/100 g BW per day of T4 or TRIAC. The 8 nmol/100 g BW per day of T4 or TRIAC induced the same increase in resting metabolic rate, yet 4 nmol/100 g BW per day of T3 was more potent (P < 0.05). For inhibiting serum TSH levels, 2 nmol/100 g BW per day of TRIAC were significantly less active than 2 nmol/100 g BW per day of T4 or 1 nmol/100 g BW per day of T3 (TRIAC, serum TSH 35.5 +/- 5.7; T3 2.58 +/- 0.91; T4 2.12 +/- 0.59 ng/ml). At higher doses serum TSH and beta-TSH mRNA were unmeasurable. Using serum T3 levels as covariate, the action of T3 and T4 was identical on cardiac monodeiodinase type 1 (5'D1) activity and hepatic malic enzyme (Me) mRNA levels and similar for hepatic 5'D1 activity. The effect of TRIAC was compared with T3 by using increasing doses of 1, 2 and 4 nmol/100 g BW per day of T3 and 2, 4 and 8 nmol/100 g BW per day of TRIAC. ANOVA indicated that there was no major difference between the effects of the hormones since with increasing doses the response of hepatic 5'D1 mRNA levels and enzyme activity and Me mRNA remained parallel. However, when studying the effect on cardiac 5'D1 activity there was not only a difference for type of treatment (T3 > TRIAC) but this difference became greater with each increment in dose. Interestingly there was also only a small effect of TRIAC on increase in heart weight compared with T3 and T4. Brain cortex monodeiodinase type 2 (5'D2) was mainly inhibited by T4 infusions. Monodeiodinase type 3 (5'D3) was stimulated by T4, less so by TRIAC and least by T3, expressing probably the local T3 and TRIAC concentrations. In conclusion, despite apparently similar effects of TRIAC and T3 and T4 on hepatic parameters of thyroid hormone action, TRIAC differs considerably in terms of its effects on cardiac 5'D1 activity and possibly on other fundamental effects of thyroid hormones on the heart since heart weight increased significantly less with TRIAC than with T3 or T4.


2006 ◽  
Vol 36 (1) ◽  
pp. 73-80 ◽  
Author(s):  
K J Oliveira ◽  
T M Ortiga-Carvalho ◽  
A Cabanelas ◽  
M A L C Veiga ◽  
K Aoki ◽  
...  

The level of thyrotropin (TSH) secretion is determined by the balance of TSH-releasing hormone (TRH) and thyroid hormones. However, neuromedin B (NB), a bombesin-like peptide, highly concentrated in the pituitary, has been postulated to be a tonic inhibitor of TSH secretion. We studied the pituitary–thyroid axis in adult male mice lacking NB receptor (NBR-KO) and their wild-type (WT) littermates. At basal state, NBR-KO mice presented serum TSH slightly higher than WT (18%, P< 0.05), normal intra-pituitary TSH content, and no significant changes in α and β TSH mRNA levels. Serum thyroxine was normal but serum triiodothyronine (T3) was reduced by 24% (P< 0.01) in NBR-KO mice. Pituitaries of NBR-KO mice exhibited no alteration in prolactin mRNA expression but type I and II deiodinase mRNA levels were reduced by 53 and 42% respectively (P< 0.05), while TRH receptor mRNA levels were importantly increased (78%, P< 0.05). The TSH-releasing effect of TRH was significantly higher in NBR-KO than in WT mice (7.1-and 4.0-fold respectively), but, while WT mice presented a 27% increase in serum T3 (P< 0.05) after TRH, NBR-KO mice showed no change in serum T3 after TRH. NBR-KO mice did not respond to exogenous NB, while WT showed a 30% reduction in serum TSH. No compensatory changes in mRNA expression of NB or other bombesin-related peptides and receptors (gastrin-releasing peptide (GRP), GRP-receptor and bombesin receptor subtype-3) were found in the pituitary of NBR-KO mice. Therefore, the data suggest that NB receptor pathways are importantly involved in thyrotroph gene regulation and function, leading to a state where TSH release is facilitated especially in response to TRH, but probably with a less-bioactive TSH. Therefore, the study highlights the important role of NB as a physiological regulator of pituitary–thyroid axis function and gene expression.


Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 3172-3181 ◽  
Author(s):  
Valerie Anne Galton ◽  
Arturo Hernandez ◽  
Donald L. St. Germain

Fasting in rodents is characterized by decreases in serum T4 and T3 levels but no compensatory increase in serum TSH level. The types 1 and 2 deiodinases (D1 and D2) are postulated to play key roles in mediating these changes. However, serum T4 and T3 levels in fasted 5′-deiodinase-deficient mice decreased by at least the same percentage as that observed in wild-type mice, whereas serum TSH level was unaffected. D3 activity was increased in kidney, muscle, and liver up to 4-fold during fasting, and the mean serum rT3 level was increased 3-fold in fasted D1-deficient mice, compared with fed animals. In wild-type mice, the tissue contents of T4 and T3 in liver, kidney, and muscle were unchanged or increased in fasted animals, and after the administration of [125I]T4 or [125I]T3, the radioactive content in the majority of tissues from fasted mice was increased 2- or 4-fold, respectively. These findings suggest that the observed fasting-induced reductions in the circulating T3 and T4 levels are mediated in part by increased D3 activity and by the sequestration of thyroid hormone and their metabolites in tissues. Studies performed in D3-deficient mice demonstrating a blunting of the fasting-induced decrease in serum T4 and T3 levels were consistent with this thesis. Thus, the systemic changes in thyroid hormone economy as a result of acute food deprivation are not dependent on the D1 or D2 but are mediated in part by sequestration of T4 and T3 in tissues and their enhanced metabolism by the D3.


1972 ◽  
Vol 70 (1) ◽  
pp. 196-208 ◽  
Author(s):  
Bengt Karlberg ◽  
Sven Almqvist

ABSTRACT The effects of the administration of normal saline in four normal subjects and the single iv injections of synthetic pyroglutamyl-histidyl-proline amide (TRH) in doses of 6.25, 12.5, 25, 50, 100, 200 and 400 μg in 12 healthy subjects were evaluated by clinical observations and serial measurements from −10 to + 360 minutes of serum TSH, PBI, STH, cholesterol, glucose and insulin. Normal saline and TRH 6.25 μg iv did not change the serum TSH level. The minimum iv dose of TRH increasing serum TSH within 10 minutes was 12.5 μg. Nine of 12 subjects gave maximal increases of serum TSH after TRH 100 μg and all after 200 and 400 μg. The time for the peak response varied with the dose from 15 to 60 minutes. The dose-response curves, average and individual, were complex and not linear. This was interpreted as a varying degree of stimulation of both pituitary synthesis and release of TSH by TRH. PBI changes were measured at 2 h and 6 h. Minimum dose for a significant increase of PBI was 12.5 μg and 6.25 μg of TRH for the respective times. No change in basal STH-levels occurred in 53 of 65 TRH-stimulation tests. Nine of the 12 changes in serum STH occurred in four subjects with varying basal STH-levels. No changes were found in serum cholesterol, glucose or insulin. Our results show that 50 μg of TRH can be used as a standard dose for the single iv stimulation of pituitary release of TSH. TRH stimulated both TSH and STH release in 18% of our tests.


Sign in / Sign up

Export Citation Format

Share Document