scholarly journals The Kisspeptin/Neurokinin B/Dynorphin (KNDy) Cell Population of the Arcuate Nucleus: Sex Differences and Effects of Prenatal Testosterone in Sheep

Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 301-311 ◽  
Author(s):  
Guanliang Cheng ◽  
Lique M. Coolen ◽  
Vasantha Padmanabhan ◽  
Robert L. Goodman ◽  
Michael N. Lehman
Endocrinology ◽  
2015 ◽  
Vol 156 (9) ◽  
pp. 3277-3291 ◽  
Author(s):  
Maria Cernea ◽  
Vasantha Padmanabhan ◽  
Robert L. Goodman ◽  
Lique M. Coolen ◽  
Michael N. Lehman

Prenatal testosterone (T)-treated ewes display a constellation of reproductive defects that closely mirror those seen in PCOS women, including altered hormonal feedback control of GnRH. Kisspeptin/neurokinin B/dynorphin (KNDy) neurons of the arcuate nucleus (ARC) play a key role in steroid feedback control of GnRH secretion, and prenatal T treatment in sheep causes an imbalance of KNDy peptide expression within the ARC. In the present study, we tested the hypothesis that prenatal T exposure, in addition to altering KNDy peptides, leads to changes in the morphology and synaptic inputs of this population, kisspeptin cells of the preoptic area (POA), and GnRH cells. Prenatal T treatment significantly increased the size of KNDy cell somas, whereas POA kisspeptin, GnRH, agouti-related peptide, and proopiomelanocortin neurons were each unchanged in size. Prenatal T treatment also significantly reduced the total number of synaptic inputs onto KNDy neurons and POA kisspeptin neurons; for KNDy neurons, the decrease was partly due to a decrease in KNDy-KNDy synapses, whereas KNDy inputs to POA kisspeptin cells were unaltered. Finally, prenatal T reduced the total number of inputs to GnRH cells in both the POA and medial basal hypothalamus, and this change was in part due to a decreased number of inputs from KNDy neurons. The hypertrophy of KNDy cells in prenatal T sheep resembles that seen in ARC kisspeptin cells of postmenopausal women, and together with changes in their synaptic inputs and projections to GnRH neurons, may contribute to defects in steroidal control of GnRH observed in this animal model.


2015 ◽  
Vol 27 (2) ◽  
pp. 100-110 ◽  
Author(s):  
T. Ahn ◽  
C. Fergani ◽  
L. M. Coolen ◽  
V. Padmanabhan ◽  
M. N. Lehman

2012 ◽  
Vol 97 (12) ◽  
pp. E2210-E2220 ◽  
Author(s):  
Melanie Taziaux ◽  
Dick F. Swaab ◽  
Julie Bakker
Keyword(s):  

Endocrinology ◽  
2014 ◽  
Vol 155 (7) ◽  
pp. 2589-2601 ◽  
Author(s):  
P. Grachev ◽  
X.F. Li ◽  
M.H. Hu ◽  
S.Y. Li ◽  
R.P. Millar ◽  
...  

Acute systemic stress disrupts reproductive function by inhibiting pulsatile gonadotropin secretion. The underlying mechanism involves stress-induced suppression of the GnRH pulse generator, the functional unit of which is considered to be the hypothalamic arcuate nucleus kisspeptin/neurokinin B/dynorphin A neurons. Agonists of the neurokinin B (NKB) receptor (NK3R) have been shown to suppress the GnRH pulse generator, in a dynorphin A (Dyn)-dependent fashion, under hypoestrogenic conditions, and Dyn has been well documented to mediate several stress-related central regulatory functions. We hypothesized that the NKB/Dyn signaling cascade is required for stress-induced suppression of the GnRH pulse generator. To investigate this ovariectomized rats, iv administered with Escherichia coli lipopolysaccharide (LPS) following intracerebroventricular pretreatment with NK3R or κ-opioid receptor (Dyn receptor) antagonists, were subjected to frequent blood sampling for hormone analysis. Antagonism of NK3R, but not κ-opioid receptor, blocked the suppressive effect of LPS challenge on LH pulse frequency. Neither antagonist affected LPS-induced corticosterone secretion. Hypothalamic arcuate nucleus NKB neurons project to the paraventricular nucleus, the major hypothalamic source of the stress-related neuropeptides CRH and arginine vasopressin (AVP), which have been implicated in the stress-induced suppression of the hypothalamic-pituitary-gonadal axis. A separate group of ovariectomized rats was, therefore, used to address the potential involvement of central CRH and/or AVP signaling in the suppression of LH pulsatility induced by intracerebroventricular administration of a selective NK3R agonist, senktide. Neither AVP nor CRH receptor antagonists affected the senktide-induced suppression of the LH pulse; however, antagonism of type 2 CRH receptors attenuated the accompanying elevation of corticosterone levels. These data indicate that the suppression of the GnRH pulse generator by acute systemic stress requires hypothalamic NKB/NK3R signaling and that any involvement of CRH therewith is functionally upstream of NKB.


2005 ◽  
Vol 272 (1571) ◽  
pp. 1473-1479 ◽  
Author(s):  
Matthew H McIntyre ◽  
Peter T Ellison ◽  
Daniel E Lieberman ◽  
Ellen Demerath ◽  
Bradford Towne

Relative finger lengths, especially the second-to-fourth finger length ratio, have been proposed as useful markers for prenatal testosterone action. This claim partly depends on an association of relative finger lengths in adults with related sex differences in children and infants. This paper reports the results of a study using serial radiographs to test for both sex differences in the fingers of infants and children and for a relationship between sex differences in the children and infant finger and adult finger length ratios. This is the first study using long-term serial data to evaluate the validity of finger length ratios as markers. We found not only that sex differences in finger length ratios arise prior to puberty, but that sex differences in the fingers of children are highly correlated with adult finger length ratios. Our results strongly encourage the further use of finger length ratios as markers of perinatal testosterone action.


Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4200-4213 ◽  
Author(s):  
Cleyde V. Helena ◽  
Natalia Toporikova ◽  
Bruna Kalil ◽  
Andrea M. Stathopoulos ◽  
Veronika V. Pogrebna ◽  
...  

Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.


Sign in / Sign up

Export Citation Format

Share Document