scholarly journals Prevention of Diabetes in db/db Mice by Dietary Soy Is Independent of Isoflavone Levels

Endocrinology ◽  
2012 ◽  
Vol 153 (11) ◽  
pp. 5200-5211 ◽  
Author(s):  
Céline Zimmermann ◽  
Christopher R. Cederroth ◽  
Lucie Bourgoin ◽  
Michelangelo Foti ◽  
Serge Nef

Abstract Recent evidence points towards the beneficial use of soy proteins and isoflavones to improve glucose control and slow the progression of type 2 diabetes. Here, we used diabetic db/db mice fed a high soy-containing diet (SD) or a casein soy-free diet to investigate the metabolic effects of soy and isoflavones consumption on glucose homeostasis, hepatic glucose production, and pancreatic islet function. Male db/db mice fed with a SD exhibited a robust reduction in hyperglycemia (50%), correlating with a reduction in hepatic glucose production and preserved pancreatic β-cell function. The rapid decrease in fasting glucose levels resulted from an inhibition of gluconeogenesis and an increase in glycolysis in the liver of db/db mice. Soy consumption also prevented the loss of pancreatic β-cell mass and thus improved glucose-stimulated insulin secretion (3-fold), which partly accounted for the overall improvements in glucose homeostasis. Comparison of SD effects on hyperglycemia with differing levels of isoflavones or with purified isoflavones indicate that the beneficial physiological effects of soy are not related to differences in their isoflavone content. Overall, these findings suggest that consumption of soy is beneficial for improving glucose homeostasis and delaying the progression of diabetes in the db/db mice but act independently of isoflavone concentration.

2010 ◽  
Vol 31 (4) ◽  
pp. 606-606
Author(s):  
Aidan S. Hancock ◽  
Aiping Du ◽  
Jingxuan Liu ◽  
Mayumi Miller ◽  
Catherine L. May

Abstract The major role of glucagon is to promote hepatic gluconeogenesis and glycogenolysis to raise blood glucose levels during hypoglycemic conditions. Several animal models have been established to examine the in vivo function of glucagon in the liver through attenuation of glucagon via glucagon receptor knockout animals and pharmacological interventions. To investigate the consequences of glucagon loss to hepatic glucose production and glucose homeostasis, we derived mice with a pancreas specific ablation of the α-cell transcription factor, Arx, resulting in a complete loss of the glucagon-producing pancreatic α-cell. Using this model, we found that glucagon is not required for the general health of mice but is essential for total hepatic glucose production. Our data clarifies the importance of glucagon during the regulation of fasting and postprandial glucose homeostasis.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Meena Garg ◽  
Manikkavasagar Thamotharan ◽  
Yun Dai ◽  
Venu Lagishetty ◽  
Aleksey V. Matveyenko ◽  
...  

Enhanced de novo lipogenesis (DNL), an adult hepatic adaption, is seen with high carbohydrate or low-fat diets. We hypothesized that ad libitum intake after prenatal calorie restriction will result in adult-onset glucose intolerance and enhanced DNL with modified lipid metabolic gene expression profile. Stable isotopes were used in 15-month-old adult male rat offspring exposed to prenatal (IUGR), pre- and postnatal (IPGR), or postnatal (PNGR) caloric restriction vs. controls (CON). IUGR vs. CON were heavier with hepatomegaly but unchanged visceral white adipose tissue (WAT), glucose intolerant with reduced glucose-stimulated insulin secretion (GSIS), pancreatic β-cell mass, and total glucose clearance rate but unsuppressed hepatic glucose production. Liver glucose transporter (Glut) 1 and DNL increased with decreased hepatic acetyl-CoA carboxylase (ACC) and fatty acid synthase but increased WAT fatty acid transport protein-1 and peroxisomal proliferator-activated receptor-γ, resistin, and visfatin gene expression. In contrast, PNGR and IPGR were lighter, had reduced visceral WAT, and were glucose tolerant with unchanged hepatic glucose production but with increased GSIS, β-cell mass, glucose clearance rate, and WAT insulin receptor. Hepatic Glut1 and DNL were also increased in lean IPGR and PNGR with increased hepatic ACC, phosphorylated ACC, and pAMPK and reduced WAT fatty acid transport protein-1, peroxisomal proliferator-activated receptor-γ, and ACCα. We conclude the following: 1) the heavy, glucose-intolerant and insulin-resistant IUGR adult phenotype is ameliorated by postnatal caloric restriction; 2) increased DNL paralleling hepatic Glut1 is a biomarker of exposure to early caloric restriction rather than the adult metabolic status; 3) hepatic lipid enzyme expression reflects GSIS rather than DNL; and 4) WAT gene expression reflects an obesogenic vs. lean phenotype.


2020 ◽  
Author(s):  
Taiyi Kuo ◽  
Domenico Accili

ABSTRACTType 2 diabetes is caused by an imbalanced supply and demand of insulin. Insulin resistance and impaired β-cell function contribute to the onset of hyperglycemia. No single treatment modality can affect both aspects of diabetes pathophysiology. Thus, current treatments focus either on increasing insulin secretion (incretin mimetics, sulfonylureas) or insulin sensitivity (metformin and TZD), or reducing hyperglycemia (insulin, sglt2i). Previously, we reported that ablation of Gc, encoding a secreted protein with a primary role in vitamin D transport, improves pancreatic β-cell function in models of diet-induced insulin resistance. Here, we show that Gc ablation has systemic insulin-sensitizing effects to prevent weight gain, hyperglycemia, glucose intolerance, and lower NEFA and triglyceride in mice fed a high-fat diet. Hyperinsulinemic-euglycemic clamps show that Gc ablation protects insulin’s ability to reduce hepatic glucose production, and increases glucose uptake in skeletal muscle and adipose tissue. Moreover, acute Gc inhibition by way of adeno-associated virus encoding a short hairpin RNA to promote Gc mRNA degradation, prevents glucose intolerance caused by high fat feeding. The data suggest that Gc inhibition can provide an approach to increase insulin production in β-cells, and insulin action in peripheral tissues.RESEARCH IN CONTEXT▪ The goal was to find a therapeutic target that can improve insulin sensitivity and β-cell function simultaneously.▪ Gc ablation preserves β-cell insulin secretion ex vivo and in vivo.▪ Deletion of Gc prevents weight gain, reduces fat mass, lowers fasting glycemia, improves glucose tolerance, reduces hepatic glucose production after feeding, and increased glucose uptake in muscle and adipose.▪ Acute Gc inhibition improves glucose tolerance, which suggests that targeting Gc could provide an alternative way to treat type 2 diabetes.


2012 ◽  
Vol 49 (1) ◽  
pp. R9-R17 ◽  
Author(s):  
Laura Marroquí ◽  
Alejandro Gonzalez ◽  
Patricia Ñeco ◽  
Ernesto Caballero-Garrido ◽  
Elaine Vieira ◽  
...  

Leptin plays an important role in the control of food intake, energy expenditure, metabolism, and body weight. This hormone also has a key function in the regulation of glucose homeostasis. Although leptin acts through central and peripheral mechanisms to modulate glucose metabolism, the pancreatic β-cell of the endocrine pancreas is a critical target of leptin actions. Leptin receptors are present in the β-cell, and their activation directly inhibits insulin secretion from these endocrine cells. The effects of leptin on insulin occur also in the long term, since this hormone inhibits insulin gene expression as well. Additionally, β-cell mass can be affected by leptin through changes in proliferation, apoptosis, or cell size. All these different functions in the β-cell are triggered by leptin as a result of the large diversity of signaling pathways that this hormone is able to activate in the endocrine pancreas. Therefore, leptin can participate in glucose homeostasis owing to different levels of modulation of the pancreatic β-cell population. Furthermore, it has been proposed that alterations in this level of regulation could contribute to the impairment of β-cell function in obesity states. In the present review, we will discuss all these issues with special emphasis on the effects and pathways of leptin signaling in the pancreatic β-cell.


1984 ◽  
Vol 247 (2) ◽  
pp. E157-E165 ◽  
Author(s):  
R. S. Sherwin ◽  
L. Sacca

Epinephrine causes a prompt increase in blood glucose concentration in the postabsorptive state. This effect is mediated by a transient increase in hepatic glucose production and an inhibition of glucose disposal by insulin-dependent tissues. Epinephrine augments hepatic glucose production by stimulating glycogenolysis and gluconeogenesis. Although its effect on glycogenolysis rapidly wanes, hyperglycemia continues because the effects of epinephrine on gluconeogenesis and glucose disposal persist. Epinephrine-induced hyperglycemia is markedly accentuated by concomitant elevations of glucagon and cortisol or in patients with diabetes. In both cases, the effect of epinephrine on hepatic glucose production is converted from a transient to a sustained response, thereby accounting for the exaggerated hyperglycemia. During glucose feeding, mild elevations of epinephrine that have little effect on fasting glucose levels cause marked glucose intolerance. This exquisite sensitivity to the diabetogenic effects of epinephrine is accounted for by its capacity to interfere with each of the components of the glucoregulatory response, i.e., stimulation of splanchnic and peripheral glucose uptake and suppression of hepatic glucose production. Our findings suggest that epinephrine is an important contributor to stress-induced hyperglycemia and the susceptibility of diabetics to the adverse metabolic effects of stress.


2016 ◽  
Vol 311 (3) ◽  
pp. E620-E627 ◽  
Author(s):  
Tianru Jin ◽  
Jianping Weng

GLP-1 and its based drugs possess extrapancreatic metabolic functions, including that in the liver. These direct hepatic metabolic functions explain their therapeutic efficiency for subjects with insulin resistance. The direct hepatic functions could be mediated by previously assumed “degradation” products of GLP-1 without involving canonic GLP-1R. Although GLP-1 analogs were created as therapeutic incretins, extrapancreatic functions of these drugs, as well as native GLP-1, have been broadly recognized. Among them, the hepatic functions are particularly important. Postprandial GLP-1 release contributes to insulin secretion, which represses hepatic glucose production. This indirect effect of GLP-1 is known as the gut-pancreas-liver axis. Great efforts have been made to determine whether GLP-1 and its analogs possess direct metabolic effects on the liver, as the determination of the existence of direct hepatic effects may advance the therapeutic theory and clinical practice on subjects with insulin resistance. Furthermore, recent investigations on the metabolic beneficial effects of previously assumed “degradation” products of GLP-1 in the liver and elsewhere, including GLP-128–36 and GLP-132–36, have drawn intensive attention. Such investigations may further improve the development and the usage of GLP-1-based drugs. Here, we have reviewed the current advancement and the existing controversies on the exploration of direct hepatic functions of GLP-1 and presented our perspectives that the direct hepatic metabolic effects of GLP-1 could be a GLP-1 receptor-independent event involving Wnt signaling pathway activation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shereen A. Mohamed ◽  
Nora E. Badawi ◽  
Hoiyda A. AbdelRasol ◽  
Hossam M. AbdelAziz ◽  
Nirvana A. Khalaf ◽  
...  

Critical illness hyperglycemia (CIH) is common in the pediatric intensive care unit (PICU). Increased glucose production, insulin resistance (IR), and pancreatic β-cell dysfunction are responsible mechanisms. We aimed to investigate β-cell function in the PICU and to uncover its relation to clinical and laboratory variables and ICU mortality. We prospectively recruited 91 children. Pancreatic β-cell function was assessed by using a homeostasis model assessment (HOMA)-β. Patients with β-cell function <40.0% had significantly higher Pediatric Risk of Mortality III (PRISM III) scores, higher rates of a positive C-reactive protein (CRP), lower IR, and a longer hospital stay. The patients with 40–80% β-cell function had the highest IR. Intermediate IR was found when the β-cell function was >80%. ICU survivors had better β-cell function than ICU non-survivors. A multivariate logistic regression analysis revealed that higher PRISM III score and HOMA-β <80.0% were significant predictors of mortality. In conclusion, β-cell dysfunction is prevalent among PICU patients and influences patient morbidity and mortality.


Sign in / Sign up

Export Citation Format

Share Document