scholarly journals Ghrelin Receptor Expression and Colocalization with Anterior Pituitary Hormones Using a GHSR-GFP Mouse Line

Endocrinology ◽  
2012 ◽  
Vol 153 (11) ◽  
pp. 5452-5466 ◽  
Author(s):  
Alex Reichenbach ◽  
Frederik J. Steyn ◽  
Mark W. Sleeman ◽  
Zane B. Andrews

Abstract Ghrelin is the endogenous ligand for the GH secretagogue receptor (GHSR) and robustly stimulates GH release from the anterior pituitary gland. Ghrelin also regulates the secretion of anterior pituitary hormones including TSH, LH, prolactin (PRL), and ACTH. However, the relative contribution of a direct action at the GHSR in the anterior pituitary gland vs. an indirect action at the GHSR in the hypothalamus remains undefined. We used a novel GHSR-enhanced green fluorescent protein (eGFP) reporter mouse to quantify GHSR coexpression with GH, TSH, LH, PRL, and ACTH anterior pituitary cells in males vs. females and in chow-fed or calorie-restricted (CR) mice. GHSR-eGFP-expressing cells were only observed in anterior pituitary. The number of GHSR-eGFP-expressing cells was higher in male compared with females, and CR did not affect the GHSR-eGFP cell number. Double staining revealed 77% of somatotrophs expressed GHSR-eGFP in both males and females. Nineteen percent and 12.6% of corticotrophs, 21% and 9% of lactotrophs, 18% and 19% of gonadotrophs, and 3% and 9% of males and females, respectively, expressed GHSR-eGFP. CR increased the number of TSH cells, but suppressed the number of lactotrophs and gonadotrophs, expressing GHSR-eGFP compared with controls. These studies support a robust stimulatory action of ghrelin via the GHSR on GH secretion and identify a previously unknown sexual dimorphism in the GHSR expression in the anterior pituitary. CR affects GHSR-eGFP expression on lactotrophs, gonadotrophs, and thyrotrophs, which may mediate reproductive function and energy metabolism during periods of negative energy balance. The low to moderate expression of GHSR-eGFP suggests that ghrelin plays a minor direct role on remaining anterior pituitary cells.

Endocrinology ◽  
2006 ◽  
Vol 147 (2) ◽  
pp. 859-864 ◽  
Author(s):  
Meghan M. Taylor ◽  
Sara L. Bagley ◽  
Willis K. Samson

Intermedin (IMD), a novel member of the adrenomedullin (AM), calcitonin gene-related peptide (CGRP), amylin (AMY) peptide family, has been reported to act promiscuously at all the known receptors for these peptides. Like AM and CGRP, IMD acts in the circulation to decrease blood pressure and in the brain to inhibit food intake, effects that could be explained by activation of the known CGRP, AM, or AMY receptors. Because AM, CGRP, and AMY have been reported to affect hormone secretion from the anterior pituitary gland, we examined the effects of IMD on GH, ACTH, and prolactin secretion from dispersed anterior pituitary cells harvested from adult male rats. IMD, in log molar concentrations ranging from 1.0 pm to 100 nm, failed to significantly alter basal release of the three hormones. Similarly, IMD failed to significantly alter CRH-stimulated ACTH or TRH-stimulated prolactin secretion in vitro. However, IMD concentration-dependently inhibited GHRH-stimulated GH release from these cell cultures. The effects of IMD, although requiring higher concentrations, were as efficacious as those of somatostatin and, like somatostatin, may be mediated, at least in part, by decreasing cAMP accumulation. These actions of IMD were not shared by other members of the AM-CGRP-AMY family of peptides, suggesting the presence of a novel, unique IMD receptor in the anterior pituitary gland and a potential neuroendocrine action of IMD to interact with the hypothalamic mechanisms controlling growth and metabolism.


2009 ◽  
Vol 204 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Kotaro Horiguchi ◽  
Motoshi Kikuchi ◽  
Kenji Kusumoto ◽  
Ken Fujiwara ◽  
Tom Kouki ◽  
...  

Folliculo-stellate (FS) cells in the anterior pituitary gland appear to possess multifunctional properties. Recently, the development of transgenic rats (S100b–green fluorescent protein (GFP) rats) that express GFP specifically in FS cells in the anterior pituitary gland has allowed us to distinguish and observe living FS cells in other kinds of pituitary cells. We used S100b–GFP rats to investigate the topographic affinity of FS cells for other pituitary cells. We observed living FS cells in enzymatically dispersed anterior pituitary cells of S100b–GFP rats under a fluorescent microscope, and noted that FS cells markedly extended and contracted cytoplasmic processes and formed interconnections with neighboring FS cells. In addition, FS cells adhered to small clusters of GFP-negative cells, which were primarily hormone-producing cells, and these clusters further aggregated during the course of cytoplasmic contraction. In the presence of laminin, fibronectin, and varying types of collagen, FS cells showed marked changes in shape and specific proliferative activity; however, GFP-negative cells did not. On reverse transcription-PCR analysis and immunohistochemistry, FS cells were shown to express integrin subunits, which are the cell surface receptors for extracellular matrix (ECM). In the anterior pituitary gland, FS cells and the various types of hormone-producing cells generate a unique topography in the presence of basement membrane components and interstitial collagens. The novel characteristics of FS cells observed in the present study suggest that in the anterior pituitary gland, FS cells play important roles in determining and/or maintaining local cellular arrangement in the presence of ECM components.


2012 ◽  
Vol 302 (3) ◽  
pp. E356-E364 ◽  
Author(s):  
Jimena Ferraris ◽  
Florence Boutillon ◽  
Marie Bernadet ◽  
Adriana Seilicovich ◽  
Vincent Goffin ◽  
...  

Since anterior pituitary expresses prolactin receptors, prolactin secreted by lactotropes could exert autocrine or paracrine actions on anterior pituitary cells. In fact, it has been observed that prolactin inhibits its own expression by lactotropes. Our hypothesis is that prolactin participates in the control of anterior pituitary cell turnover. In the present study, we explored the action of prolactin on proliferation and apoptosis of anterior pituitary cells and its effect on the expression of the prolactin receptor. To determine the activity of endogenous prolactin, we evaluated the effect of the competitive prolactin receptor antagonist Δ1–9-G129R-hPRL in vivo, using transgenic mice that constitutively and systemically express this antagonist. The weight of the pituitary gland and the anterior pituitary proliferation index, determined by BrdU incorporation, were higher in transgenic mice expressing the antagonist than in wild-type littermates. In addition, blockade of prolactin receptor in vitro by Δ1–9-G129R-hPRL increased proliferation and inhibited apoptosis of somatolactotrope GH3 cells and of primary cultures of male rat anterior pituitary cells, including lactotropes. These results suggest that prolactin acts as an autocrine/paracrine antiproliferative and proapoptotic factor in the anterior pituitary gland. In addition, anterior pituitary expression of the long isoform of the prolactin receptor, measured by real-time PCR, increased about 10-fold in transgenic mice expressing the prolactin receptor antagonist, whereas only a modest increase in the S3 short-isoform expression was observed. These results suggest that endogenous prolactin may regulate its own biological actions in the anterior pituitary by inhibiting the expression of the long isoform of the prolactin receptor. In conclusion, our observations suggest that prolactin is involved in the maintenance of physiological cell renewal in the anterior pituitary. Alterations in this physiological role of prolactin could contribute to pituitary tumor development.


1998 ◽  
Vol 159 (3) ◽  
pp. 389-395 ◽  
Author(s):  
D Pisera ◽  
S Theas ◽  
A De Laurentiis ◽  
M Lasaga ◽  
B Duvilanski ◽  
...  

We have previously reported that neurokinin A (NKA), a tachykinin closely related to substance P, increases the release of prolactin (PRL) from the anterior pituitary gland of male rats, but not from pituitaries of ovariectomized (OVX) female rats. In this study, we evaluated the influence of estrogens in the action of NKA on PRL secretion in female rats. NKA stimulated the in vitro release of PRL from pituitary glands of OVX-chronically estrogenized rats, and of proestrus and estrus rats, but had no effect in anterior pituitaries of diestrus rats. In addition, we observed that cultured anterior pituitary cells of OVX rats responded to NKA only when they were incubated for 3 days in the presence of estradiol 10(-9) M. This effect was blocked by L-659,877, an NK-2 receptor antagonist. We also studied the action of NKA on PRL release during lactation. The response of anterior pituitary cells to NKA was variable over this period. The maximal sensitivity to NKA was observed at day 10 of lactation. Furthermore, the blockade of endogenous NKA by the administration of an anti-NKA serum to lactating rats reduced the PRL surge induced by the suckling stimulus. These results show that the responsiveness of the anterior pituitary gland of female rats to NKA is modulated by the endocrine environment, and suggest that NKA may participate in the control of PRL secretion during the estrus cycle and lactation.


2007 ◽  
Vol 38 (2) ◽  
pp. 207-219 ◽  
Author(s):  
Weiming Zheng ◽  
Jingying Yang ◽  
Qiaorong Jiang ◽  
Zhibin He ◽  
Lisa M Halvorson

Over the past decade, substantial advances have been made in our understanding of the transcription factors which regulate gene expression in gonadotropes. One of the most important of these factors, steroidogenic factor-1 (SF-1; NR5A1) is critical for gonadotropin and GnRH-receptor expression. Interestingly, a closely related nuclear hormone receptor, liver receptor homologue-1 (LRH-1; NR5A2) has recently been detected in the anterior pituitary gland; however, its functional significance in this tissue has not been investigated. For the experiments reported here, we hypothesized that LRH-1 plays a previously unrecognized role in gonadotrope physiology. Towards this end, we first demonstrate LRH-1 mRNA and protein expression in both primary pituitary cells and gonadotrope-derived cell lines. We next show that LRH-1 stimulates promoter activity of the GnRH-receptor and gonadotropin subunit genes. Within the LHβ gene, this response appears to be mediated by DNA-binding and transactivation through previously characterized SF-1 cis-elements. To our knowledge, this is the first report demonstrating a functional role for LRH-1 in the gonadotrope population of the anterior pituitary gland.


1995 ◽  
Vol 146 (2) ◽  
pp. 293-300 ◽  
Author(s):  
J M M Rondeel ◽  
W Klootwijk ◽  
E Linkels ◽  
P H M Jeucken, W ◽  
L J Hofland ◽  
...  

Abstract Recent evidence shows that thyrotrophin-releasing hormone (TRH) immunoreactivity in the rat anterior pituitary gland is accounted for by the TRH-like tripeptide prolineamide-glutamyl-prolineamide (pGlu-Glu-ProNH2, <EEP-NH2). The present study was undertaken to investigate further the regulation, localization and possible intrapituitary function of <EEP-NH2. Anterior pituitary levels of <EEP-NH2 were determined between days 5 and 35 of life, during the oestrous cycle and after treatment with the luteinizing hormone-releasing hormone (LHRH) antagonist Org 30276. Treatment of adult males with the LHRH antagonist either for 1 day (500 μg/100 g body weight) or for 5 days (50 μg/100 g body weight) reduced anterior pituitary <EEP-NH2 levels by 25–30% (P<0·05 versus saline-treated controls). Anterior pituitary <EEP-NH2 increased between days 5 and 35 of life. In females, these levels were 2- to 3-fold higher (P<0·05) than in males between days 15 and 25 after birth; these changes corresponded with the higher plasma follicle-stimulating hormone (FSH) levels in the female rats. After day 25, <EEP-NH2 levels in female rats decreased in parallel with a decrease in plasma FSH. Injections with the LHRH antagonist (500 μg/100 g body weight), starting on day 22 of life, led to reduced contents of <EEP-NH2 in the anterior pituitary gland of female rats on days 26 and 30 (55 and 35% decrease respectively). Levels of <EEP-NH2 in the anterior pituitary gland did not change significantly during the oestrous cycle. Fractionation of anterior pituitary cells by unit gravity sedimentation was found to be compatible with the localization of <EEP-NH2 in gonadotrophs. In vitro, <EEP-NH2 dose-dependently inhibited TRH-stimulated growth hormone (GH) release from anterior pituitary cells obtained from neonatal rats, but no consistent effects were seen on the in vitro release of luteinizing hormone (LH), FSH, prolactin (PRL) or thyroid-stimulating hormone (TSH) under basal or TRH/LHRH-stimulated conditions. Furthermore, <EEP-NH2 did not affect the in vitro hormone release by anterior pituitary cells obtained from adult rats. In vivo, <EEP-NH2 (0·3–1·0 μg intravenously) did not affect plasma PRL, TSH, LH, FSH and GH in adult male rats. We conclude that <EEP-NH2 in the anterior pituitary gland is regulated by LHRH, is probably localized in gonadotrophs and may play a (paracrine) role in neonatal GH release. Journal of Endocrinology (1995) 146, 293–300


1986 ◽  
Vol 108 (3) ◽  
pp. 399-403 ◽  
Author(s):  
R. L. Pérez ◽  
G. A. Machiavelli ◽  
M. I. Romano ◽  
J. A. Burdman

ABSTRACT Relationships among the release of prolactin, the effect of oestrogens and the proliferation of prolactin-secreting cells were studied under several experimental conditions. Administration of sulpiride or oestradiol released prolactin and stimulated cell proliferation in the anterior pituitary gland of adult male rats. Clomiphene completely abolished the rise in cell proliferation, but did not interfere with the sulpiride-induced release of prolactin. Treatment with oestradiol plus sulpiride significantly increased serum prolactin concentrations and the mitotic index compared with the sum of the stimulation produced by both drugs separately. Bromocriptine abolished the stimulatory effect of oestradiol on the serum prolactin concentration and on cell proliferation. In oestradiol- and/or sulpiride-treated rats, 80% of the cells in mitoses were lactotrophs. The remaining 20% did not stain with antisera against any of the pituitary hormones. The number of prolactin-secreting cells in the anterior pituitary gland significantly increased after the administration of oestradiol or sulpiride. The results demonstrate that treatment with sulpiride and/or oestradiol increases the proliferation and the number of lactotrophs in the anterior pituitary gland of the rat. J. Endocr. (1986) 108, 399–403


2016 ◽  
Vol 35 (4) ◽  
pp. 463-475 ◽  
Author(s):  
Sonia A. Ronchetti ◽  
María S. Bianchi ◽  
Beatriz H. Duvilanski ◽  
Jimena P. Cabilla

Inorganic arsenic (iAs) is at the top of toxic metalloids. Inorganic arsenic-contaminated water consumption is one of the greatest environmental health threats worldwide. Human iAs exposure has been associated with cancers of several organs, neurological disorders, and reproductive problems. Nevertheless, there are no reports describing how iAs affects the anterior pituitary gland. The aim of this study was to investigate the mechanisms involved in iAs-mediated anterior pituitary toxicity both in vivo and in vitro. We showed that iAs administration (from 5 to 100 ppm) to male rats through drinking water increased messenger RNA expression of several oxidative stress-responsive genes in the anterior pituitary gland. Serum prolactin levels diminished, whereas luteinizing hormone (LH) levels were only affected at the higher dose tested. In anterior pituitary cells in culture, 25 µmol/L iAs significantly decreased prolactin release in a time-dependent fashion, whereas LH levels remained unaltered. Cell viability was significantly reduced mainly by apoptosis evidenced by morphological and phosphatidylserine externalization studies. This process is characterized by early depolarization of mitochondrial membrane potential and increased levels of reactive oxygen species. Expression of some key oxidative stress-responsive genes, such as heme oxygenase-1 and metallothionein-1, was also stimulated by iAs exposure. The antioxidant N-acetyl cysteine prevented iAs-induced effects on the expression of oxidative stress markers, prolactin release, and apoptosis. In summary, the present work demonstrates for the first time that iAs reduces prolactin release both in vivo and in vitro and induces apoptosis in anterior pituitary cells, possibly resulting from imbalanced cellular redox status.


Sign in / Sign up

Export Citation Format

Share Document