scholarly journals Implantation Failure in Female Kiss1−/− Mice Is Independent of Their Hypogonadic State and Can Be Partially Rescued by Leukemia Inhibitory Factor

Endocrinology ◽  
2014 ◽  
Vol 155 (8) ◽  
pp. 3065-3078 ◽  
Author(s):  
Michele Calder ◽  
Yee-Ming Chan ◽  
Renju Raj ◽  
Macarena Pampillo ◽  
Adrienne Elbert ◽  
...  

The hypothalamic kisspeptin signaling system is a major positive regulator of the reproductive neuroendocrine axis, and loss of Kiss1 in the mouse results in infertility, a condition generally attributed to its hypogonadotropic hypogonadism. We demonstrate that in Kiss1−/− female mice, acute replacement of gonadotropins and estradiol restores ovulation, mating, and fertilization; however, these mice are still unable to achieve pregnancy because embryos fail to implant. Progesterone treatment did not overcome this defect. Kiss1+/− embryos transferred to a wild-type female mouse can successfully implant, demonstrating the defect is due to maternal factors. Kisspeptin and its receptor are expressed in the mouse uterus, and we suggest that it is the absence of uterine kisspeptin signaling that underlies the implantation failure. This absence, however, does not prevent the closure of the uterine implantation chamber, proper alignment of the embryo, and the ability of the uterus to undergo decidualization. Instead, the loss of Kiss1 expression specifically disrupts embryo attachment to the uterus. We observed that on the day of implantation, leukemia inhibitory factor (Lif), a cytokine that is absolutely required for implantation in mice, is weakly expressed in Kiss1−/− uterine glands and that the administration of exogenous Lif to hormone-primed Kiss1−/− female mice is sufficient to partially rescue implantation. Taken together, our study reveals that uterine kisspeptin signaling regulates glandular Lif levels, thereby identifying a novel and critical role for kisspeptin in regulating embryo implantation in the mouse. This study provides compelling reasons to explore this role in other species, particularly livestock and humans.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Naguib Salleh ◽  
Nelli Giribabu

Leukaemia inhibitory factor (LIF) plays an indispensible role in embryo implantation. Aberrant LIF production is linked to implantation failure. LIF regulates multiple processes prior to and during implantation such as uterine transformation into a receptive state, decidualization, blastocyst growth and development, embryo-endometrial interaction, trophoblast invasion, and immune modulation. Due to its critical role, LIF has been a target for a nonhormonal contraception. In this review, we summarize up-to-date information on the role of LIF in implantation and its role in contraception.


Reproduction ◽  
2006 ◽  
Vol 131 (2) ◽  
pp. 341-349 ◽  
Author(s):  
Haengseok Song ◽  
Hyunjung Lim

Implantation failure in mice lacking leukemia inhibitory factor (LIF) establishes that this cytokine is crucial to this process. LIF transcripts are expressed in the uterus in a biphasic manner: LIF is expressed in the gland on the morning of day 4 and again in stromal cells surrounding the blastocyst with the onset of implantation in the evening of day 4 of pregnancy. However, it is not yet clear whether both phases of LIF expression are required for implantation, since the receptor usage by uterine LIF still remains elusive. Here we have provided evidence that major cell types expressing theLIF receptor (LIFR) and its signal transducing partner gp130 are mostly disparate in the mouse uterus during the glandular LIF expression in the morning of day 4. In contrast, LIFR and gp130 expressions overlap in the luminal epithelium at the time of blastocyst attachment on the evening of day 4 when the second phase of LIF expression occurs in stromal cells surrounding the blastocyst, suggesting that LIF participates in implantation in a paracrine manner. Similar expression patterns for LIFR and gp130 were observed when a delayed implantation model was used. For example, a transient overlapping expression of LIFR and gp130 was evident at 12 h after estrogen-induced termination of delayed implantation. Coimmunoprecipitation experiments showed that LIFR and gp130 form heterodimers and are available for LIF signaling at the time of blastocyst attachment. We have also shown that an intra-peritoneal administration of recombinant LIF in LIF-deficient pregnant mice on the evening of day 4, close to the time when the second phase of LIF expression is normally observed, is sufficient to rescue implantation failure, and that there is no evidence of antagonistic action by soluble forms of the receptors. Collectively, our results have provided evidence that LIFR and gp130 form a functional heterodimer in the uterus during the attachment reaction to direct LIF signaling.


2010 ◽  
Vol 22 (9) ◽  
pp. 101
Author(s):  
L. Lin ◽  
E. M. Menkhorst ◽  
E. Dimitriadis

Decidualization is the differentiation of endometrial stromal cells into decidual cells. It is a critical process in embryo implantation, placentation and the establishment of pregnancy. Inadequate decidualization can lead to infertility, abnormal placentation and recurrent miscarriage. Endometrial leukemia inhibitory factor (LIF) is indispensible in blastocyst implantation in mice and dysregulated in infertile women. LIF is produced by 1st trimester decidual cells but its role in decidualization is not known. This study aimed to examine the role of LIF in human and mouse decidualization. Primary human endometrial stomal cells (HESC) were isolated and decidualized (D) by treatment with estradiol (E) +medroxyprogesterone acetate (MPA) for 14 days. HESC were also treated with E+MPA+/–LIF (0.5, 5, 50, 100 and 200 ng/mL) for 14 days. Prolactin secretion was used to assess the extent of decidualization (n = 6). D and non-D HESC were also treated with LIF (0.5, 5, 50, 100 and 200 ng/mL +/– LIF inhibitor) for 15min and the phosphorylation (p) of signal transducer and activator of transcription (STAT)3/STAT3 abundance was detected by Western blot (n = 4). RNA was isolated for analysis of LIF and LIF receptor (R) mRNA expression during decidualization (n = 4). HESC treated with E+MPA+LIF (50, 100 and 200 ng/mL) secreted more prolactin compared to cells treated with E+MPA alone (P < 0.05). LIF increased pSTAT3/STAT3 abundance in D and non-D cells while LIF+LIF inhibitor abolished pSTAT3/STAT3. LIF mRNA was downregulated while LIF-R mRNA increased during decidualization. In vivo, mated mice (n = 5) were injected intraperitoneally with a unique long acting LIF inhibitor post-implantation at day 4.5 of pregnancy and resulted in reduced decidualization compared to control. This is the first study to demonstrate that LIF promoted decidualization of HESC possibly via pSTAT3. It further suggested that LIF regulated decidualization in mice demonstrating a newly identified critical role for LIF in the establishment of pregnancy.


Placenta ◽  
2021 ◽  
Vol 114 ◽  
pp. 139
Author(s):  
Jumpei Terakawa ◽  
Kazuhiro Matsuo ◽  
Takafumi Namiki ◽  
Kana Ohtomo ◽  
Atsuko Kageyama ◽  
...  

Endocrinology ◽  
2019 ◽  
Vol 161 (2) ◽  
Author(s):  
Mitsunori Matsuo ◽  
Yasushi Hirota ◽  
Yamato Fukui ◽  
Hidetoshi Fujita ◽  
Tomoko Saito-Fujita ◽  
...  

Abstract Progestogens including progesterone (P4) and levonorgestrel (LNG) are clinically used for multiple purposes such as contraception and infertility treatment. The effects of progestogens on the uterus remains to be elucidated. Here we examine the effect of excessive progestogen administration on embryo implantation focusing on the function of uterine leukemia inhibitory factor (LIF), a cytokine that is induced by estrogen and essential for embryo attachment. Treatment of wild-type (WT) female mice with vehicle (control), LNG at the dose of 300 μg/kg/day and P4 at the dose of 10 mg/day from day 1 to day 4 of pregnancy was conducted. LNG-treated and P4-treated mice showed embryo attachment failure on day 5 of pregnancy (The rate of mice with embryo attachment sites [%MAS], 11% and 13%, respectively), while all the control mice had normal attachment sites. Uterine LIF expression was significantly reduced in LNG-treated and P4-treated mice on day 4 evening. Administration of recombinant LIF (rLIF) at the dose of 24 μg/day on day 4 significantly rescued embryo attachment failure in LNG-treated and P4-treated mice (%MAS, 80% and 75%, respectively). Estradiol (E2) administration also rescued embryo attachment failure in LNG-treated mice (%MAS, 83%). Furthermore, excess P4 treatment before implantation decreased decidual P4 receptor (PGR) expression and induced decidualization defect apart from LIF downregulation. These findings indicate that progestogens cause embryo attachment inhibition through downregulation of uterine LIF expression and compromised decidualization through downregulation of PGR independently of LIF reduction. This study may contribute to a better understanding of contraceptive action of progestogens.


2015 ◽  
Vol 7 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Bo Chu ◽  
Liangwen Zhong ◽  
Shuang Dou ◽  
Jun Wang ◽  
Jianmin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document