Steroid hormones differentially modulate glycoconjugate synthesis and vectorial secretion by polarized uterine epithelial cells in vitro.

Endocrinology ◽  
1992 ◽  
Vol 130 (1) ◽  
pp. 240-248 ◽  
Author(s):  
S K Mani ◽  
D D Carson ◽  
S R Glasser
Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 832
Author(s):  
Damian Tanski ◽  
Agnieszka Skowronska ◽  
Malgorzata Tanska ◽  
Ewa Lepiarczyk ◽  
Mariusz T. Skowronski

Aquaporins (AQPs) are integral membrane proteins, which play an important role in water homeostasis in the uterus. According to the literature, the expression of aquaporins in reproductive structures depends on the local hormonal milieu. The current study investigated the effect of selected PKA kinase inhibitor H89 and MAPK kinase inhibitor PD98059, on the expression of AQP1, 2, 5, and 7, and steroid hormones (E2), progesterone (P4), and arachidonic acid (AA) in the porcine endometrium on days 18–20 and 2–4 of the estrous cycle (the follicular phase where estrogen and follicle-stimulating hormone (FSH) are secreted increasingly in preparation for estrus and the luteal phase where the ovarian follicles begin the process of luteinization with the formation of the corpus luteum and progesterone secretion, respectively). The luminal epithelial cells were incubated in vitro in the presence of the aforementioned factors. The expression of mRNA was determined by the quantitative real-time PCR technique. In general, in Experiment 1, steroid hormones significantly increased expression of AQP1, 2, and 5 while arachidonic acid increased expression of AQP2 and AQP7. On the other hand, MAPK kinase inhibitor significantly decreased the expression of AQP1 and 5. In Experiment 2, E2, P4, or AA combined with kinase inhibitors differentially affected on AQPs expression. E2 in combination with PKA inhibitor significantly decreased expression of AQP1 but E2 or P4 combined with this inhibitor increased the expression of AQP5 and 7. On the contrary, E2 with PD98059 significantly increased AQP5 and AQP7 expression. Progesterone in combination with MAPK kinase inhibitor significantly downregulated the expression of AQP5 and upregulated AQP7. Arachidonic acid mixed with H89 or PD98059 caused a decrease in the expression of AQP5 and an increase of AQP7. The obtained results indicate that estradiol, progesterone, and arachidonic acid through PKA and MAPK signaling pathways regulate the expression of AQP1 and AQP5 in the porcine luminal epithelial cells in the periovulatory period.


1992 ◽  
Vol 4 (3) ◽  
pp. 275 ◽  
Author(s):  
LA Salamonsen ◽  
RA Cherny ◽  
JK Findlay

Normal endometrial function is a result of regulation by the combination of ovarian steroids and local agents arising from within the embryo-maternal unit. We have used in vitro techniques to examine the role of steroid hormones and ovine trophoblast interferon on endometrial function in the ewe. Immunolocalization of oestrogen receptors in endometrial tissue demonstrated marked changes throughout the cycle and in early pregnancy with maximal concentrations during the follicular and very early luteal phases. Protein secretion from highly purified cultured ovine stromal and epithelial endometrial cells, and the direction of secretion from polarized epithelial cells, has been examined by incorporation of [35S]methionine and by one- and two-dimensional gel electrophoresis. Protein synthesis is greater in stromal than in epithelial cells and more protein is secreted apically than basally from epithelial cells. A number of common and some different proteins are secreted by the two cell types. One secreted protein is matrix metalloproteinase-3 (stromelysin) which degrades components of basement membranes. Ovine trophoblast interferon attenuates the production of prostaglandins from ovine endometrial cells but its action is not by an effect on localization or concentration of the enzyme prostaglandin synthase or on expression of the gene for prostaglandin synthase. Such studies in vitro contribute to our understanding of how the endometrium is prepared for implantation.


2014 ◽  
Vol 26 (1) ◽  
pp. 188
Author(s):  
R. C. Youngblood ◽  
S. T. Willard ◽  
P. L. Ryan ◽  
J. M. Feugang

Quantum dot technology has enabled researchers to incorporate the intrinsic properties of such nanoparticles into physiological exploration. Previous work from our laboratory has demonstrated that quantum dots can be incorporated into spermatozoa without deleterious effects to physiological parameters such as motility, viability, and fertilizing potential (Feugang et al. 2012). However, the journey of spermatozoa within the female reproductive tract is met with many physicochemical obstacles and checkpoints that include the binding of spermatozoa to utero-oviducal epithelial cells. Moreover, the binding ability/affinity of quantum dot-labelled spermatozoa has not been tested and therefore, the objective of this study is to test the binding semblance of quantum dot-labelled spermatozoa to uterine epithelial cells compared to normal sperm, and the subsequent use of the technology to develop a bioluminescent sperm binding assay. Porcine uterine epithelial (PUE) cells were seeded into 96-well clear-bottomed plates (20 000 cells/well) and allowed to grow to 95% confluency. Motile spermatozoa were selected from fresh pooled semen of fertile boars and labelled with quantum dot nanoparticles to form quantum sperm, as previously described (Feugang et al. 2012). Final concentrations of 107 labelled (QD+) and non-labelled (QD–) spermatozoa were added to monolayers of PUE cells and co-incubated in PBS/polyvinylpyrrolidone (PVP) at 37°C, 5% CO2. The control consisted of PUE cells alone in the PBS/PVP medium. Each treatment was performed in triplicate and experiments were repeated 3 times. After 1 h of co-incubation, the supernatant from each well was transferred to the adjacent three wells. The co-incubated wells containing expected PUE-sperm binding were then washed 3 times with PBS/PVP to eliminate any unbound sperm. PUE-quantum sperm (QD+) and PUE-non-labelled sperm (QD–) complexes were verified using bright field microscopy, followed by measurement of photonic emission from each well (GloMax Multi Detection System, Promega, Madison, WI, USA). Data was analysed by ANOVA with the threshold of significance fixed at P < 0.05. There were no visual differences in binding patterns between QD+ and QD–, which appeared similar under the microscope. However, the photonic signals (relative luminescent units; RLU) from QD+ wells were significantly higher than both the control and QD– wells (2534.84 ± 639.91 v. 542.46 ± 639.91 and 806.48 ± 639.91 RLU; P < 0.05). Supernatants collected from the QD+ wells, representing unbound quantum sperm, had the highest photonic emissions when compared to all other wells, with or without spermatozoa (19 948.23 ± 639.91 RLU; P < 0.05). Results demonstrate that quantum dot nanoparticles can be incorporated into boar spermatozoa without affecting their binding affinity to uterine epithelial cells, and their subsequent use in a biophotonic sperm binding assay. Further optimization and experimentations are ongoing to establish whether bioluminescent quantum sperm could serve to develop sensitive in vitro binding assays to better characterise sperm viability. Support was provided by U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) grant number 58-6402-3-0120


1994 ◽  
Vol 107 (9) ◽  
pp. 2439-2448
Author(s):  
L. Rochwerger ◽  
S. Dho ◽  
L. Parker ◽  
J.K. Foskett ◽  
M. Buchwald

We have demonstrated previously the modulation of CFTR expression by estrogen in vivo in the rat uterine epithelium. The purpose of this study was to establish a suitable in vitro system to investigate the regulation of CFTR by steroid hormones. Primary cultures of rat uterine epithelial cells, which showed high levels of CFTR expression in vitro, were infected with an adeno/SV40 virus. One clone, UIT 1.16, which retained the morphology of the primary epithelial cells yet proliferated beyond the life span of the primary culture, was isolated and characterized. Successful immortalization of UIT 1.16 cells was verified by the presence of a band corresponding to the SV40 large T-antigen in western blots, as well as by their ability to proliferate continuously. Transmission electron microscopy studies revealed that these cells maintained the characteristics of a polarized epithelium with well-established membrane domains and specialized intercellular junctions. A high transepithelial electrical resistance was also observed when cells were assayed in modified Ussing chambers. When the basolateral cellular membrane of cells grown in vitrogen-coated filters was permeabilized with nystatin, a forskolin-stimulated Cl- permeability was observed in the apical membrane, similar to that present in other CFTR-expressing epithelial cells. UIT 1.16 cells showed high levels of CFTR expression on northern blots. The expression of CFTR was dependent on the presence of estrogen in the culture medium, since almost undetectable levels of CFTR mRNA were observed when the cells were cultured in medium containing serum depleted of steroid hormones. However, addition of estrogen to this medium prevented the disappearance of CFTR mRNA, confirming estrogen-regulated expression of CFTR in the UIT 1.16 cell line. The newly developed UIT 1.16 cell line provides a valuable model to analyze the regulation of CFTR expression by steroid hormones. Moreover, the cell line could also be used to investigate the role of CFTR in the uterus during the normal female cycle as well as for the study of other uterine epithelial functions and the agents that regulate them.


Sign in / Sign up

Export Citation Format

Share Document