Regulation of Sertoli cell differentiation by the testicular paracrine factor PModS: analysis of common signal transduction pathways.

Endocrinology ◽  
1994 ◽  
Vol 134 (1) ◽  
pp. 149-157 ◽  
Author(s):  
J N Norton ◽  
J L Vigne ◽  
M K Skinner
Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1475
Author(s):  
Veronica Ruta ◽  
Vittoria Pagliarini ◽  
Claudio Sette

Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.


1992 ◽  
Vol 11 (2) ◽  
pp. 543-550 ◽  
Author(s):  
A. Eriksson ◽  
A. Siegbahn ◽  
B. Westermark ◽  
C.H. Heldin ◽  
L. Claesson-Welsh

2010 ◽  
Vol 21 (6) ◽  
pp. 425-434 ◽  
Author(s):  
Kiyoshi Hirahara ◽  
Kamran Ghoreschi ◽  
Arian Laurence ◽  
Xiang-Ping Yang ◽  
Yuka Kanno ◽  
...  

2007 ◽  
Vol 27 (19) ◽  
pp. 6742-6755 ◽  
Author(s):  
Poppy P. Fotiadou ◽  
Chiaki Takahashi ◽  
Hasan N. Rajabi ◽  
Mark E. Ewen

ABSTRACT The ras proto-oncogenes, of which there are four isoforms, are molecular switches that function in signal transduction pathways to control cell differentiation, proliferation, and survival. How the Ras isoforms orchestrate cellular processes that affect behavior is poorly understood. Further, why cells express two or more Ras isoforms is unknown. Here, using a genetically defined system, we show that the presence of both wild-type KRas and NRas isoforms is required for transformation because they perform distinct nonoverlapping functions: wild-type NRas regulates adhesion, and KRas coordinates motility. Remarkably, we find that Ras isoforms achieve functional specificity by engaging different signaling pathways to affect the same cellular processes, thereby coordinating cellular outcome. Although we find that signaling from both isoforms intersects in actin and microtubule cytoskeletons, our results suggest that KRas signals through Akt and Cdc42 while NRas signals through Raf and RhoA. Our analyses suggest a previously unappreciated convergence of different Ras isoforms on the dynamics of the processes involved in transformation.


2012 ◽  
Vol 302 (8) ◽  
pp. E914-E923 ◽  
Author(s):  
María F. Riera ◽  
Mariana Regueira ◽  
María N. Galardo ◽  
Eliana H. Pellizzari ◽  
Silvina B. Meroni ◽  
...  

The final number of Sertoli cells reached during the proliferative periods determines sperm production capacity in adulthood. It is well known that FSH is the major Sertoli cell mitogen; however, little is known about the signal transduction pathways that regulate the proliferation of Sertoli cells. The hypothesis of this investigation was that FSH regulates proliferation through a PI3K/Akt/mTORC1 pathway, and additionally, AMPK-dependent mechanisms counteract FSH proliferative effects. The present study was performed in 8-day-old rat Sertoli cell cultures. The results presented herein show that FSH, in addition to increasing p-Akt, p-mTOR, and p-p70S6K levels, increases p-PRAS40 levels, probably contributing to improving mTORC1 signaling. Furthermore, the decrease in FSH-stimulated p-Akt, p-mTOR, p-p70S6K, and p-PRAS40 levels in the presence of wortmannin emphasizes the participation of PI3K in FSH signaling. Additionally, the inhibition of FSH-stimulated Sertoli cell proliferation by the effect of wortmannin and rapamycin point to the relevance of the PI3K/Akt/mTORC1 signaling pathway in the mitotic activity of FSH. On the other hand, by activating AMPK, several interesting observations were made. Activation of AMPK produced an increase in Raptor phosphorylation, a decrease in p70S6K phosphorylation, and a decrease in FSH-stimulated Sertoli cell proliferation. The decrease in FSH-stimulated cell proliferation was accompanied by an increased expression of the cyclin-dependent kinase inhibitors (CDKIs) p19INK4d, p21Cip1, and p27Kip1. In summary, it is concluded that FSH regulates Sertoli cell proliferation with the participation of a PI3K/Akt/mTORC1 pathway and that AMPK activation may be involved in the detention of proliferation by, at least in part, a decrease in mTORC1 signaling and an increase in CDKI expression.


Sign in / Sign up

Export Citation Format

Share Document