scholarly journals Wild-Type NRas and KRas Perform Distinct Functions during Transformation

2007 ◽  
Vol 27 (19) ◽  
pp. 6742-6755 ◽  
Author(s):  
Poppy P. Fotiadou ◽  
Chiaki Takahashi ◽  
Hasan N. Rajabi ◽  
Mark E. Ewen

ABSTRACT The ras proto-oncogenes, of which there are four isoforms, are molecular switches that function in signal transduction pathways to control cell differentiation, proliferation, and survival. How the Ras isoforms orchestrate cellular processes that affect behavior is poorly understood. Further, why cells express two or more Ras isoforms is unknown. Here, using a genetically defined system, we show that the presence of both wild-type KRas and NRas isoforms is required for transformation because they perform distinct nonoverlapping functions: wild-type NRas regulates adhesion, and KRas coordinates motility. Remarkably, we find that Ras isoforms achieve functional specificity by engaging different signaling pathways to affect the same cellular processes, thereby coordinating cellular outcome. Although we find that signaling from both isoforms intersects in actin and microtubule cytoskeletons, our results suggest that KRas signals through Akt and Cdc42 while NRas signals through Raf and RhoA. Our analyses suggest a previously unappreciated convergence of different Ras isoforms on the dynamics of the processes involved in transformation.

2001 ◽  
Vol 114 (18) ◽  
pp. 3359-3366 ◽  
Author(s):  
Gary Davidson ◽  
Rosanna Dono ◽  
Rolf Zeller

To examine the potential role of fibroblast growth factor (FGF) signalling during cell differentiation, we used conditionally immortalised podocyte cells isolated from kidneys of Fgf2 mutant and wild-type mice. Wild-type mouse podocyte cells upregulate FGF2 expression when differentiating in culture, as do maturing podocytes in vivo. Differentiating wild-type mouse podocyte cells undergo an epithelial to mesenchymal-like transition, reorganise their actin cytoskeleton and extend actin-based cellular processes; all of these activities are similar to the activity of podocytes in vivo. Molecular analysis of Fgf2 mutant mouse podocyte cells reveals a general disruption of FGF signalling as expression of Fgf7 and Fgf10 are also downregulated. These FGF mutant mouse podocyte cells in culture fail to activate mesenchymal markers and their post-mitotic differentiation is blocked. Furthermore, mutant mouse podocyte cells in culture fail to reorganise their actin cytoskeleton and form actin-based cellular processes. These studies show that FGF signalling is required by cultured podocytes to undergo the epithelial to mesenchymal-like changes necessary for terminal differentiation. Together with other studies, these results point to a general role for FGF signalling in regulating cell differentiation and formation of actin-based cellular processes during morphogenesis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1374-1374
Author(s):  
Terri D Richmond ◽  
Monica L Bailey ◽  
Wallace Y Langdon ◽  
Dwayne Barber

Abstract Erythropoietin (EPO) is the primary cytokine regulator of red blood cell (RBC) progenitor growth, survival and differentiation. EPO stimulation is regulated by EPO binding to its cognate ligand, the EPO receptor (EPO-R), and activating the primary associated tyrosine kinase, JAK2. The critical importance of EPO, EPO-R and JAK2 to erythropoiesis is demonstrated by the fatal embryonic anemia that develops upon EPO, EPO-R or JAK2 deletion. Intracellular signal transduction pathways regulating growth, survival and differentiation downstream of the EPO-R and JAK2 are well documented. However, relatively little is known about down-regulation of EPO-R signal transduction pathways at this time. Our laboratory has previously demonstrated that EPO stimulation leads to Cbltyrosine phosphorylation and subsequent recruitment of Crk-C3G, leading to Rap1activation. In addition, Cbl serves as an adaptor protein linking to PI 3 kinase and Rasand targets receptor tyrosine kinases for ubiquitination and proteasomal degradation. Cbl knockout mice have been generated and have defects in stem and T cell signaling pathways. Elevated platelet numbers and splenomegaly was observed, suggesting that Cbl −/− mice may have defects in megakaryocyte/erythroid progenitors or more committed cells in each lineage. The objective of this studyis to determine whether Cbl affects erythropoiesis and EPO-dependent signaling. Resting Cbl −/− mice (in the C57Bl/6 background) have increased numbers of Burst Forming Unit-Erythroid and Colony Forming Unit-Erythroid (CFU-E) cells. Furthermore, there is a 3-fold elevation of splenic CFU-E numbers. Erythroid differentiation was monitored via expression of the Transferrin Receptor (CD71) and Ter119. Cbl-deficient mice have delayed differentiation in the bone marrow with diminished CD71-Ter119+ cells. Increased apoptosis is observed in Ter119+ erythroid cells isolated from Cbl −/− mice as determined by Annexin V staining and confirmed by increased PARP cleavage. Interestingly, reactive oxygen species in wild type and Cbl-deficient mice remain unchanged. Despite normal resting hematologic parameters, serum EPO concentrations are elevated in Cbl knockout mice. Serum VEGF levels are comparable between wild type and Cbl −/− mice, suggesting that the EPO effect is specific to the erythroid lineage and not an effect of hypoxia. Notable differences in wild type and Cbl −/− mice were observed when stress erythropoiesiswas induced by phenylhydrazine-mediated anemia. Cbl-deficient mice respond with enhanced hematocrit recovery and increased reticulocyte production. EPO-dependent Aktphosphorylation is hypersensitive in Cbl −/− splenic erythroblasts. Interestingly, expression ofFoxo3a was stabilized in Cbl −/− splenic erythroblasts, suggesting that Cbl degrades Foxo3a in a direct or indirect manner. Given the importance of Foxo3a in regulating erythropoiesis, we are currently determining whether Cbl targets Foxo3a for ubiquitin-mediated degradation. These data demonstrate the remarkable homeostatic ability of the mouse to retain normal RBC concentrations in the peripheral blood despite elevated erythroid progenitors and cell signaling. Importantly, these studies are the first to phenotypically explore the effects of genetic ablation of an EPO-responsive E3 ubiquitin ligase in erythropoiesis.


2012 ◽  
Vol 197 (3) ◽  
pp. 351-360 ◽  
Author(s):  
Deok-Ho Kim ◽  
Paolo P. Provenzano ◽  
Chris L. Smith ◽  
Andre Levchenko

The architecture of the extracellular matrix (ECM) directs cell behavior by providing spatial and mechanical cues to which cells respond. In addition to soluble chemical factors, physical interactions between the cell and ECM regulate primary cell processes, including differentiation, migration, and proliferation. Advances in microtechnology and, more recently, nanotechnology provide a powerful means to study the influence of the ECM on cell behavior. By recapitulating local architectures that cells encounter in vivo, we can elucidate and dissect the fundamental signal transduction pathways that control cell behavior in critical developmental, physiological, and pathological processes.


2010 ◽  
Vol 44 (4) ◽  
pp. 195-201 ◽  
Author(s):  
Samantha Gardner ◽  
Emmanouil Stavrou ◽  
Patricia E Rischitor ◽  
Elena Faccenda ◽  
Adam J Pawson

The binding of GnRH to its receptor on pituitary gonadotropes leads to the targeting of a diverse array of signalling mediators. These mediators drive multiple signal transduction pathways, which in turn regulate a variety of cellular processes, including the biosynthesis and secretion of the gonadotropins LH and FSH. Advances in our understanding of the mechanisms and signalling pathways that are recruited to regulate gonadotrope function are continually being made. This review will focus on the recent demonstration that key mediators of the canonical Wnt signalling pathway are targeted by GnRH in gonadotropes, and that these may play essential roles in regulating the expression of many of the key players in gonadotrope biology, including the GnRH receptor and the gonadotropins.


2010 ◽  
Vol 21 (6) ◽  
pp. 425-434 ◽  
Author(s):  
Kiyoshi Hirahara ◽  
Kamran Ghoreschi ◽  
Arian Laurence ◽  
Xiang-Ping Yang ◽  
Yuka Kanno ◽  
...  

2008 ◽  
Vol 22 (11) ◽  
pp. 3853-3865 ◽  
Author(s):  
Delphine Quénet ◽  
Véronique Gasser ◽  
Laetitia Fouillen ◽  
Florence Cammas ◽  
Sarah Sanglier‐Cianferani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document