Relative contribution of phosphoinositides and phosphatidylcholine hydrolysis to the actions of carbamylcholine, thyrotropin, and phorbol esters on dog thyroid slices: regulation of cytidine monophosphate-phosphatidic acid accumulation and phospholipase-D activity. II. Actions of phorbol esters.

Endocrinology ◽  
1994 ◽  
Vol 135 (6) ◽  
pp. 2497-2503 ◽  
Author(s):  
J Mockel ◽  
C Lejeune ◽  
J E Dumont
1989 ◽  
Vol 16 (3) ◽  
pp. 257-262
Author(s):  
Lena Gustavsson ◽  
Christofer Lundqvist ◽  
Christer Ailing

The effects of phorbol esters on phospholipase D activity were studied in C-6 glioma cells. The cell lipids were prelabelled with [3H]-glycerol or [14C]-arachidonic acid. Phosphatidylethanol was formed during stimulation with 100nM 12-0-tetradecanoylphorbol-13-acetate (TPA), when ethanol was present in the culture medium. After 30 minutes of stimulation, phosphatidylethanol constituted 2.6% of the [3H]-glycerol-labelled lipids. Stimulating the cells with TPA in the absence of ethanol caused a significant increase in labelled phosphatidic acid. This increase was inhibited by ethanol. The present findings demonstrate that TPA stimulates phospholipase D activity in cultured C-6 glioma cells.


1991 ◽  
Vol 2 (10) ◽  
pp. 841-850 ◽  
Author(s):  
S J Stewart ◽  
G R Cunningham ◽  
J A Strupp ◽  
F S House ◽  
L L Kelley ◽  
...  

A number of cellular signaling systems are called into play by interaction of the T lymphocyte antigen receptor/CD3 complex with its cognate antigen. Well-described signaling systems include phosphoinositide turnover, tyrosine phosphorylation, protein kinase C activation, and increased cytosolic calcium. We have explored the possibility that another recently described signaling system, activation of phospholipase D, may be operative. Data presented here demonstrate that stimulation of Jurkat T cells with anti-CD3 antibodies or phorbol esters resulted in activation of phospholipase D, as measured by production of phosphatidylethanol and phosphatidic acid. The combination of anti-CD3 antibody plus phorbol ester led to a greater than additive production of phosphatidylethanol and to the additive production of phosphatidic acid (in the absence of ethanol). Phorbol esters as a second stimulus with anti-CD3 antibody led to a additive increase in cellular diacylglycerol content but provided no increased production of inositol phosphates, suggesting that diacylglycerol production in these cells results from hydrolysis of noninositol containing lipids as well as from phosphinositides. Exogenous addition of phosphatidic acid led to increases in cytosolic calcium that, depending on the concentration used, resulted from release of an intracellular store of calcium and influx of extracellular calcium. Changes in cytosolic calcium occurred in the absence of inositol phosphates production. These studies establish a role for increased phospholipase D activity in T lymphocyte activation.


1969 ◽  
Vol 112 (5) ◽  
pp. 795-799 ◽  
Author(s):  
R. H. Quarles ◽  
R. M. C. Dawson

1. The activity of phospholipase D (phosphatidylcholine phosphatidohydrolase, EC 3.1.4.4) towards ultrasonically treated phosphatidylcholine or large phosphatidylcholine particles activated with ether was maximal near pH5, and there was little activity above pH6. 2. When the enzyme was activated by the addition of phosphatidic acid to large phosphatidylcholine particles the pH optimum was shifted to pH6·5 irrespective of the amount of activator added. 3. When the enzyme was activated with low concentrations of dodecyl sulphate the pH optimum was 5·5 with little activity above pH6. With higher concentrations of dodecyl sulphate the pH–activity profile was shifted upwards towards a pH optimum of 6·5–6·6, the magnitude of the shift depending on the extent of the hydrolysis. 4. The shifts in the pH–activity profiles cannot be correlated with changes in the ‘surface pH’ of the substrate particles calculated from the measurement of their ζ-potentials (electrophoretic mobilities).


2001 ◽  
Vol 360 (3) ◽  
pp. 707-715 ◽  
Author(s):  
Trevor R. PETTITT ◽  
Mark McDERMOTT ◽  
Khalid M. SAQIB ◽  
Neil SHIMWELL ◽  
Michael J. O. WAKELAM

Mammalian cells contain different phospholipase D enzymes (PLDs) whose distinct physiological roles are poorly understood and whose products have not been characterized. The development of porcine aortic endothelial (PAE) cell lines able to overexpress PLD-1b or −2a under the control of an inducible promoter has enabled us to characterize both the substrate specificity and the phosphatidic acid (PtdOH) product of these enzymes under controlled conditions. Liquid chromatography–MS analysis showed that PLD1b- and PLD2a-transfected PAE cells, as well as COS7 and Rat1 cells, generate similar PtdOH and, in the presence of butan-1-ol, phosphatidylbutanol (PtdBut) profiles, enriched in mono- and di-unsaturated species, in particular 16:0/18:1. Although PtdBut mass increased, the species profile did not change in cells stimulated with ATP or PMA. Overexpression of PLD made little difference to basal or stimulated PtdBut formation, indicating that activity is tightly regulated in vivo and that factors other than just PLD protein levels limit hydrolytic function. In vitro assays using PLD-enriched lysates showed that the enzyme could utilize both phosphatidylcholine and, much less efficiently, phosphatidylethanolamine, with slight selectivity towards mono- and di-unsaturated species. Phosphatidylinositol was not a substrate. Thus PLD1b and PLD2a hydrolyse a structurally similar substrate pool to generate an identical PtdOH product enriched in mono- and di-unsaturated species that we propose to function as the intracellular messenger forms of this lipid.


2000 ◽  
Vol 22 (2) ◽  
pp. 147-154 ◽  
Author(s):  
Teun Munnik ◽  
Harold J. G. Meijer ◽  
Bas ter Riet ◽  
Heribert Hirt ◽  
Wolfgang Frank ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document