Phospholipase D1b and D2a generate structurally identical phosphatidic acid species in mammalian cells

2001 ◽  
Vol 360 (3) ◽  
pp. 707-715 ◽  
Author(s):  
Trevor R. PETTITT ◽  
Mark McDERMOTT ◽  
Khalid M. SAQIB ◽  
Neil SHIMWELL ◽  
Michael J. O. WAKELAM

Mammalian cells contain different phospholipase D enzymes (PLDs) whose distinct physiological roles are poorly understood and whose products have not been characterized. The development of porcine aortic endothelial (PAE) cell lines able to overexpress PLD-1b or −2a under the control of an inducible promoter has enabled us to characterize both the substrate specificity and the phosphatidic acid (PtdOH) product of these enzymes under controlled conditions. Liquid chromatography–MS analysis showed that PLD1b- and PLD2a-transfected PAE cells, as well as COS7 and Rat1 cells, generate similar PtdOH and, in the presence of butan-1-ol, phosphatidylbutanol (PtdBut) profiles, enriched in mono- and di-unsaturated species, in particular 16:0/18:1. Although PtdBut mass increased, the species profile did not change in cells stimulated with ATP or PMA. Overexpression of PLD made little difference to basal or stimulated PtdBut formation, indicating that activity is tightly regulated in vivo and that factors other than just PLD protein levels limit hydrolytic function. In vitro assays using PLD-enriched lysates showed that the enzyme could utilize both phosphatidylcholine and, much less efficiently, phosphatidylethanolamine, with slight selectivity towards mono- and di-unsaturated species. Phosphatidylinositol was not a substrate. Thus PLD1b and PLD2a hydrolyse a structurally similar substrate pool to generate an identical PtdOH product enriched in mono- and di-unsaturated species that we propose to function as the intracellular messenger forms of this lipid.

2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


1997 ◽  
Vol 77 (2) ◽  
pp. 303-320 ◽  
Author(s):  
J. H. Exton

Phospholipase D exists in various forms that differ in their regulation but predominantly hydrolyze phosphatidylcholine. The Ca(2+)-dependent isozymes of protein kinase C regulate phospholipase D in vitro and play a major role in its control by growth factors and G protein-linked agonists in vivo. Recent studies have demonstrated that small G proteins of the ADP-ribosylation factor (ARF) and Rho families activate the enzyme in vitro, and evidence is accumulating that they also are involved in its control in vivo. Both types of G protein play important roles in cellular function, and the possible mechanisms by which they are activated by agonists are discussed. There is also emerging evidence of the control of phospholipase D and Rho proteins by soluble tyrosine kinases and novel serine/threonine kinases. The possible role of these kinases in agonist regulation of phospholipase D is discussed. The function of phospholipase D in cells is still poorly defined. Postulated roles of phosphatidic acid produced by phospholipase D action include the activation of Ca(2+)-independent isoforms of protein kinase C, the regulation of growth and the cytoskeleton in fibroblasts, and control of the respiratory burst in neutrophils. Another important function of phosphatidic acid is to act as a substrate for a specific phospholipase A2 to generate lysophosphatidic acid, which is becoming increasingly recognized as a major intercellular messenger. Finally, it is possible that the phospholipid changes induced in various cellular membranes by phospholipase D may per se play an important role in vesicle trafficking and other membrane-associated events.


1996 ◽  
Vol 16 (7) ◽  
pp. 3576-3586 ◽  
Author(s):  
C H Yang ◽  
J Tomkiel ◽  
H Saitoh ◽  
D H Johnson ◽  
W C Earnshaw

The kinetochore in eukaryotes serves as the chromosomal site of attachment for microtubules of the mitotic spindle and directs the movements necessary for proper chromosome segregation. In mammalian cells, the kinetochore is a highly differentiated trilaminar structure situated at the surface of the centromeric heterochromatin. CENP-C is a basic, DNA-binding protein that localizes to the inner kinetochore plate, the region that abuts the heterochromatin. Microinjection experiments using antibodies specific for CENP-C have demonstrated that this protein is required for the assembly and/or stability of the kinetochore as well as for a timely transition through mitosis. From these observations, it has been suggested that CENP-C is a structural protein that is involved in the organization or the kinetochore. In this report, we wished to identify and map the functional domains of CENP-C. Analysis of CENP-C truncation mutants expressed in vivo demonstrated that CENP-C possesses an autonomous centromere-targeting domain situated at the central region of the CENP-C polypeptide. Similarly, in vitro assays revealed that a region of CENP-C with the ability to bind DNA is also located at the center of the CENP-C molecule, where it overlaps the centromere-targeting domain.


OCL ◽  
2018 ◽  
Vol 25 (4) ◽  
pp. D408 ◽  
Author(s):  
Emeline Tanguy ◽  
Qili Wang ◽  
Pierre Coste de Bagneaux ◽  
Laetitia Fouillen ◽  
Tamou Thahouly ◽  
...  

Although originally restricted to their structural role as major constituents of membranes, lipids are now well-defined actors to integrate intracellular or extracellular signals. Accordingly, it has been known for decades that lipids, especially those coming from diet, are important to maintain normal physiological functions and good health. This is especially the case to maintain proper cognitive functions and avoid neuronal degeneration. But besides this empiric knowledge, the exact molecular nature of lipids in cellular signaling, as well as their precise mode of action are only starting to emerge. The recent development of novel pharmacological, molecular, cellular and genetic tools to study lipids in vitro and in vivo has contributed to this improvement in our knowledge. Among these important lipids, phosphatidic acid (PA) plays a unique and central role in a great variety of cellular functions. This article will review the different findings illustrating the involvement of PA generated by phospholipase D (PLD) and diacylglycerol kinases (DGK) in the different steps of neuronal development and neurosecretion. We will also present lipidomic evidences indicating that different species of PA are synthesized during these two key neuronal phenomena.


2020 ◽  
pp. 153537022096696
Author(s):  
Leonardo Lima Fuscaldi ◽  
Joaquim Teixeira de Avelar Júnior ◽  
Daniel Moreira dos Santos ◽  
Daiane Boff ◽  
Vívian Louise Soares de Oliveira ◽  
...  

In the continuing search for novel antibiotics, antimicrobial peptides are promising molecules, due to different mechanisms of action compared to classic antibiotics and to their selectivity for interaction with microorganism cells rather than with mammalian cells. Previously, our research group has isolated the antimicrobial peptide LyeTx I from the venom of the spider Lycosa erythrognatha. Here, we proposed to synthesize three novel shortened derivatives from LyeTx I (LyeTx I mn; LyeTx I mnΔK; LyeTx I mnΔKAc) and to evaluate their toxicity and biological activity as potential antimicrobial agents. Peptides were synthetized by Fmoc strategy and circular dichroism analysis was performed, showing that the three novel shortened derivatives may present membranolytic activity, like the original LyeTx I, once they folded as an alpha helix in 2.2.2-trifluorethanol and sodium dodecyl sulfate. In vitro assays revealed that the shortened derivative LyeTx I mnΔK presents the best score between antimicrobial (↓ MIC) and hemolytic (↑ EC50) activities among the synthetized shortened derivatives, and LUHMES cell-based NeuriTox test showed that it is less neurotoxic than the original LyeTx I (EC50 [LyeTx I mnΔK] ⋙ EC50 [LyeTx I]). In vivo data, obtained in a mouse model of septic arthritis induced by Staphylococcus aureus, showed that LyeTx I mnΔK is able to reduce infection, as demonstrated by bacterial recovery assay (∼10-fold reduction) and scintigraphic imaging (less technetium-99m labeled-Ceftizoxime uptake by infectious site). Infection reduction led to inflammatory process and pain decreases, as shown by immune cells recruitment reduction and threshold nociception increment, when compared to positive control group. Therefore, among the three shortened peptide derivatives, LyeTx I mnΔK is the best candidate as antimicrobial agent, due to its smaller amino acid sequence and toxicity, and its greater biological activity.


1998 ◽  
Vol 17 (5) ◽  
pp. 571-575 ◽  
Author(s):  
Amy L. Ellis

Drugs from a variety of chemical classes used for a wide range of therapeutic indications can be photosensitizers in humans. Several drugs are phototoxic in animal models as well; there are no nonclinical data for many. In vitro tests have been developed as predictors of phototoxicity and although they have been used as screens, none have replaced the in vivo tests done in rodents (usually mice or guinea pigs) since these have been good predictors of clinical phototoxicity. Some phototoxic drug classes are co-carcinogens with ultraviolet radiation (UVA and/or UVB) in hairless mice, specifically psoralens, retinoids, and fluo-roquinolones. Treatment with 8-methoxypsoralen and ultraviolet A radiation for psoriasis is also carcinogenic in humans. It has been suggested that in vitro photogenotoxicity assays using microorganisms or mammalian cells may be predictive of photo co-carcinogenicity. Some attractions of these in vitro assays, compared to the hairless mouse photo co-carcinogenicity assay, are their generally shorter duration and lower cost as well as reducing the number of animals used in research. Currently, personnel at the Food and Drug Administration (FDA) are examining the available data on phototoxicity, photogenotoxicity, and photo co-carcinogenicity to determine how this information can best be used toregulate and label drug products, and considering which assays should be recommended under specific circumstances.


1991 ◽  
Vol 11 (11) ◽  
pp. 5435-5445
Author(s):  
A De Benedetti ◽  
S Joshi-Barve ◽  
C Rinker-Schaeffer ◽  
R E Rhoads

HeLa cells were transformed to express antisense RNA against initiation factor eIF-4E mRNA from an inducible promoter. In the absence of inducer, these cells (AS cells) were morphologically similar to control cells but grew four- to sevenfold more slowly. Induction of antisense RNA production was lethal. Both eIF-4E mRNA and protein levels were reduced in proportion to the degree of antisense RNA expression, as were the rates of protein synthesis in vivo and in vitro. Polysomes were disaggregated with a concomitant increase in ribosomal subunits. Translation in vitro was restored by addition of the initiation factor complex eIF-4F but not by eIF-4E alone. Immunological analysis revealed that the p220 component of eIF-4F was decreased in extracts of AS cells and undetectable in AS cells treated with inducer, suggesting that p220 and eIF-4E levels are coordinately regulated. eIF-4A, another component of eIF-4F, was unaltered.


1991 ◽  
Vol 11 (11) ◽  
pp. 5435-5445 ◽  
Author(s):  
A De Benedetti ◽  
S Joshi-Barve ◽  
C Rinker-Schaeffer ◽  
R E Rhoads

HeLa cells were transformed to express antisense RNA against initiation factor eIF-4E mRNA from an inducible promoter. In the absence of inducer, these cells (AS cells) were morphologically similar to control cells but grew four- to sevenfold more slowly. Induction of antisense RNA production was lethal. Both eIF-4E mRNA and protein levels were reduced in proportion to the degree of antisense RNA expression, as were the rates of protein synthesis in vivo and in vitro. Polysomes were disaggregated with a concomitant increase in ribosomal subunits. Translation in vitro was restored by addition of the initiation factor complex eIF-4F but not by eIF-4E alone. Immunological analysis revealed that the p220 component of eIF-4F was decreased in extracts of AS cells and undetectable in AS cells treated with inducer, suggesting that p220 and eIF-4E levels are coordinately regulated. eIF-4A, another component of eIF-4F, was unaltered.


2011 ◽  
Vol 49 ◽  
pp. 103-117 ◽  
Author(s):  
Christian Beaulé ◽  
Daniel Granados-Fuentes ◽  
Luciano Marpegan ◽  
Erik D Herzog

In vitro assays have localized circadian pacemakers to individual cells, revealed genetic determinants of rhythm generation, identified molecular players in cell–cell synchronization and determined physiological events regulated by circadian clocks. Although they allow strict control of experimental conditions and reduce the number of variables compared with in vivo studies, they also lack many of the conditions in which cellular circadian oscillators normally function. The present review highlights methods to study circadian timing in cultured mammalian cells and how they have shaped the hypothesis that all cells are capable of circadian rhythmicity.


2015 ◽  
Vol 114 (08) ◽  
pp. 379-389 ◽  
Author(s):  
Matthias Unseld ◽  
Anastasia Chilla ◽  
Clemens Pausz ◽  
Rula Mawas ◽  
Johannes Breuss ◽  
...  

SummaryThe tumour suppressor phosphatase and tensin homologue (PTEN), mutated or lost in many human cancers, is a major regulator of angiogenesis. However, the cellular mechanism of PTEN regulation in endothelial cells so far remains elusive. Here, we characterise the urokinase receptor (uPAR, CD87) and its tumour-derived soluble form, suPAR, as a key molecule of regulating PTEN in endothelial cells. We observed uPAR-deficient endothelial cells to express enhanced PTEN mRNA- and protein levels. Consistently, uPAR expression in endogenous negative uPAR cells, down-regulated PTEN and activated the PI3K/Akt pathway. Additionally, we found that integrin adhesion receptors act as trans-membrane signaling partners for uPAR to repress PTEN transcription in a NF-κB-dependent manner. Functional in vitro assays with endothelial cells, derived from uPAR-deficient and PTEN heterozygous crossbred mice, demonstrated the impact of uPAR- dependent PTEN regulation on cell motility and survival. In an in vivo murine angiogenesis model uPAR-deficient PTEN heterozygous animals increased the impaired angiogenic phenotype of uPAR knockout mice and were able to reverse the high invasive potential of PTEN heterozygots. Our data provide first evidence that endogenous as well as exogenous soluble uPAR down-regulated PTEN in endothelial cells to support angiogenesis. The uPAR-induced PTEN regulation might represent a novel target for drug interference, and may lead to the development of new therapeutic strategies in anti-angiogenic treatment.


Sign in / Sign up

Export Citation Format

Share Document