Phorbol Esters Stimulate Phospholipase D Activity in C-6 Glioma Cells

1989 ◽  
Vol 16 (3) ◽  
pp. 257-262
Author(s):  
Lena Gustavsson ◽  
Christofer Lundqvist ◽  
Christer Ailing

The effects of phorbol esters on phospholipase D activity were studied in C-6 glioma cells. The cell lipids were prelabelled with [3H]-glycerol or [14C]-arachidonic acid. Phosphatidylethanol was formed during stimulation with 100nM 12-0-tetradecanoylphorbol-13-acetate (TPA), when ethanol was present in the culture medium. After 30 minutes of stimulation, phosphatidylethanol constituted 2.6% of the [3H]-glycerol-labelled lipids. Stimulating the cells with TPA in the absence of ethanol caused a significant increase in labelled phosphatidic acid. This increase was inhibited by ethanol. The present findings demonstrate that TPA stimulates phospholipase D activity in cultured C-6 glioma cells.

1991 ◽  
Vol 2 (10) ◽  
pp. 841-850 ◽  
Author(s):  
S J Stewart ◽  
G R Cunningham ◽  
J A Strupp ◽  
F S House ◽  
L L Kelley ◽  
...  

A number of cellular signaling systems are called into play by interaction of the T lymphocyte antigen receptor/CD3 complex with its cognate antigen. Well-described signaling systems include phosphoinositide turnover, tyrosine phosphorylation, protein kinase C activation, and increased cytosolic calcium. We have explored the possibility that another recently described signaling system, activation of phospholipase D, may be operative. Data presented here demonstrate that stimulation of Jurkat T cells with anti-CD3 antibodies or phorbol esters resulted in activation of phospholipase D, as measured by production of phosphatidylethanol and phosphatidic acid. The combination of anti-CD3 antibody plus phorbol ester led to a greater than additive production of phosphatidylethanol and to the additive production of phosphatidic acid (in the absence of ethanol). Phorbol esters as a second stimulus with anti-CD3 antibody led to a additive increase in cellular diacylglycerol content but provided no increased production of inositol phosphates, suggesting that diacylglycerol production in these cells results from hydrolysis of noninositol containing lipids as well as from phosphinositides. Exogenous addition of phosphatidic acid led to increases in cytosolic calcium that, depending on the concentration used, resulted from release of an intracellular store of calcium and influx of extracellular calcium. Changes in cytosolic calcium occurred in the absence of inositol phosphates production. These studies establish a role for increased phospholipase D activity in T lymphocyte activation.


1992 ◽  
Vol 262 (2) ◽  
pp. F185-F191 ◽  
Author(s):  
D. A. Troyer ◽  
O. F. Gonzalez ◽  
R. M. Padilla ◽  
J. I. Kreisberg

We have studied the effects of the vasoactive agents phorbol 12-myristate 13-acetate (PMA) and vasopressin (VP) on phosphatidylcholine metabolism in cultured rat glomerular mesangial cells. PMA and VP stimulate the incorporation of [3H]choline into phosphatidylcholine and the release of [3H]choline into the culture medium. VP, but not PMA, also increases the release of phosphorylcholine into the medium. This suggests that PMA specifically stimulates phospholipase D, whereas VP stimulates phospholipases C and D. Experiments were also conducted to look for production of phosphatidic acid and diacylglycerol, products of phospholipase D- and C-mediated breakdown of phosphatidylcholine. Treatment of cells prelabeled with [3H]myristic acid for 2.5 min with PMA or VP increases the content of [3H]myristic acid in diacylglycerol and phosphatidic acid. A dual labeling study ([3H]myristic acid and [14C]arachidonic acid) suggests that phosphatidylcholine is an important source of diacylglycerol in cells treated with VP and PMA. When PMA or VP are added to [3H]myristic acid-labeled cells in the presence of ethanol, increased labeling of phosphatidylethanol is seen as early as 2.5 min. Desensitization of protein kinase C by overnight treatment of cells with PMA blocked subsequent VP-stimulated formation of phosphatidylethanol and release of [3H]choline. When cells were simultaneously treated with VP and PMA, additive effects on phosphatidylethanol formation and [3H]choline release were observed.


1993 ◽  
Vol 294 (3) ◽  
pp. 711-717 ◽  
Author(s):  
J Song ◽  
D A Foster

Phospholipase D (PLD) activity, as measured by the transphosphatidylation of cellular phospholipids, is elevated in BALB/c 3T3 cells transformed by v-Src. Phorbol esters that activate protein kinase C (PKC) also increase PLC activity in BALB/c 3T3 cells. v-Src-induced PLD activity could be distinguished from phorbol ester-induced PLD activity by differential radiolabelling of phospholipids, which are the substrates of PLD. Both v-Src- and phorbol ester-induced PLD activity could be detected when phospholipids were prelabelled with either radiolabelled myristate or palmitate; however, only phorbol ester-induced PLD activity could be detected when either arachidonate or 1-O-alkyl-sn-glyceryl-3-phosphorylcholine (alkyl-lysoPC) was used to prelabel the phospholipids. The increased PLD activity in v-Src-transformed cells was not detected when the cells were prelabelled with either arachidonic acid or alkyl-lysoPC, which contains an ether linkage at sn-1 of the glycerol backbone. As both arachidonic acid and alkyl-lysoPC are incorporated into phosphatidylcholine (PC), the substrate for v-Src-induced PLD activity, these data suggest that the PLD activated by v-Src can distinguish PCs lacking arachidonic acid and ether linkages. Consistent with v-Src activating a PLD activity that is distinct from that activated by phorbol esters that activate PKC directly, neither depleting cells of PKC nor treatment with the protein kinase inhibitor, staurosporine, had any effect on v-Src-induced PLD activity, whereas both PKC depletion and staurosporine inhibited phorbol ester-induced PLD activity. Taken together, these data suggest that v-Src activates a PKC-independent PLD activity that is specific for a subpopulation of PC and distinct from the PLD activity induced by PKC activity induced by phorbol esters. The diacylglycerol produced from PC by the action of the v-Src-induced PLD may therefore be responsible for the activation of PKC by v-Src.


1996 ◽  
Vol 270 (4) ◽  
pp. C1153-C1163 ◽  
Author(s):  
J. R. Coorssen

Numerous studies have identified phospholipase metabolites as membrane fusogens, and phospholipase D (PLD) (J.R. Coorssen and R.J. Haslam. FEBS Lett. 316: 170-174, 1993), C (PLC), and A2 (PLA2) activities correlate with secretion. Do these enzymes have essential or modulatory roles? This study confirms that secretion does not require Ca2+ or PLC (Coorssen et al. Cell Regul. 1: 1027-1041, 1990). Arachidonic acid (AA), phosphatidic acid (PA) and analogues, exogenous metabolites of PLA2 and PLD, were tested in electropermeabilized human platelets. AA potentiated guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-induced secretion, and eicosanoids were not essential. Endogenous [3H]AA formation correlated with GTP gamma S-induced secretion, and phorbol 12-myristate 13-acetate (PMA) promoted these effects. Inhibitors were used to probe phospholipase influences on secretion. Only PLD inhibitors blocked secretion. However, PMA blocked inhibition of protein kinase C (PKC) and secretion by quercetin, suggesting that PA formed by PLD supports PKC activation and GTP gamma S-induced secretion. Thus PA analogues had no effect alone but enhanced GTP gamma S-induced PKC activity and secretion. Slower PLD activation compared with secretion also indicates a nonessential role. This is the first report of a Ca(2+)-independent PLA2 activity in human platelets, use of quercetin as a PLD inhibitor, and dissociation of PLA2, PLC, and PLD activities from secretion. No major phospholipase activities are essential to the final steps in exocytosis, but modulatory roles are indicated.


1995 ◽  
Vol 130 (5) ◽  
pp. 1197-1205 ◽  
Author(s):  
Y He ◽  
F Grinnell

Fibroblast contraction of stressed collagen matrices results in activation of a cAMP signal transduction pathway. This pathway involves influx of extracellular Ca2+ ions and increased production of arachidonic acid. We report that within 5 min after initiating contraction, a burst of phosphatidic acid release was detected. Phospholipase D was implicated in production of phosphatidic acid based on observation of a transphosphatidylation reaction in the presence of ethanol that resulted in formation of phosphatidylethanol at the expense of phosphatidic acid. Activation of phospholipase D required extracellular Ca2+ ions and was regulated by protein kinase C. Ethanol treatment of cells also inhibited by 60-70% contraction-dependent release of arachidonic acid and cAMP but had no effect on increased cAMP synthesis after addition of exogenous arachidonic acid or on phospholipase A2 activity measured in cell extracts. Moreover, other treatments that inhibited the burst of phosphatidic acid release after contraction--chelating extracellular Ca2+ or down-regulating protein kinase C--also blocked contraction activated cyclic AMP signaling. These results were consistent with the idea that phosphatidic acid production occurred upstream of arachidonic acid in the contraction-activated cAMP signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document