The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats.

Endocrinology ◽  
1995 ◽  
Vol 136 (5) ◽  
pp. 2320-2324 ◽  
Author(s):  
M Singh ◽  
E M Meyer ◽  
J W Simpkins
1999 ◽  
Vol 276 (5) ◽  
pp. R1334-R1338 ◽  
Author(s):  
Tetsuya Kushikata ◽  
Jidong Fang ◽  
James M. Krueger

Various growth factors are involved in sleep regulation. Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family; it and its receptors are found in normal brain. Furthermore, cerebral cortical levels of BDNF mRNA have a diurnal variation and increase after sleep deprivation. Therefore, we investigated whether BDNF would promote sleep. Twenty-four male Sprague-Dawley rats (320–380 g) and 25 male New Zealand White rabbits (4.5–5.5 kg) were surgically implanted with electroencephalographic (EEG) electrodes, a brain thermistor, and a lateral intracerebroventricular cannula. The animals were injected intracerebroventricularly with pyrogen-free saline and, on a separate day, one of the following doses of BDNF: 25 or 250 ng in rabbits; 10, 50, or 250 ng in rats. The EEG, brain temperature, and motor activity were recorded for 23 h after the intracerebroventricular injections. BDNF increased time spent in non-rapid eye movement sleep (NREMS) in rats and rabbits and REMS in rabbits. Current results provide further evidence that various growth factors are involved in sleep regulation.


Author(s):  
Callen Zulkifli ◽  
Reganedgary Jonlean ◽  
Adisti Dwijayanti ◽  
Desak Gede Budi Krisnamurti ◽  
Erni Hernawati Purwaningsih ◽  
...  

1999 ◽  
Vol 19 (4) ◽  
pp. 425-434 ◽  
Author(s):  
Aurel Popa-Wagner ◽  
Eike Schröder ◽  
Harald Schmoll ◽  
Lary C. Walker ◽  
Christoff Kessler

Although stroke in humans usually afflicts the elderly, most experimental studies on the nature of cerebral ischemia have used young animals. This is especially important when studying restorative processes that are age dependent. To explore the potential of older animals to initiate regenerative processes after cerebral ischemia, the authors studied the expression of the juvenile-specific cytoskeletal protein, microtubule-associated protein (MAP) 1B, and the adult-specific protein, MAP2, in male Sprague-Dawley rats at 3 months and 20 months of age. The levels of MAP1B and MAP2 transcripts and the corresponding proteins declined with increasing age in the hippocampus. In the cortex, the levels of the transcripts did not change significantly with age, but the morphologic features of immunostained fibers were clearly affected by age; that is, cortical MAP1B fibers became thicker, and MAP2 fibers, more diffuse, in aged rats. Focal cerebral ischemia, produced by reversible occlusion of the right middle cerebral artery, resulted in a large decrease in the expression of both MAP1B and MAP2 in the infarct core at the messenger ribonucleic acid and protein levels. However, at 1 week after the stroke, there was vigorous expression of MAP1B and its messenger ribonucleic acid, as well as MAP2 protein, in the border zone adjacent to the infarct of 3-month-old and 20 month-old male Sprague-Dawley rats. The upregulation of these key cytologic elements generally was diminished in aged rats compared with young animals, although the morphologic features of fibers in the infarct border zone were similar in both age groups. These results suggest that the regenerative potential of the aged rat brain appears to be competent, although attenuated, at least with respect to MAP1B and MAP2 expression up to 20 months of age.


Biologia ◽  
2011 ◽  
Vol 66 (6) ◽  
Author(s):  
Xuechai Chen ◽  
Abida Arshad ◽  
Hong Qing ◽  
Rui Wang ◽  
Jianqing Lu ◽  
...  

AbstractSalsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; Sal) is structurally similar to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which is supposed to have a role in the development of Parkinson-like syndrome in both human and non-human subjects. In the human brain, the amount of (R)-enantiomer of Sal is much higher than (S)-enantiomer, suggesting that a putative enzyme may participate in the synthesis of (R)-salsolinol, called (R)-salsolinol synthase. In this study, the (R)-salsolinol synthase activity in the condensation of dopamine and acetaldehyde was investigated in the crude extracts from the brains of Sprague Dawley rats. Identification of the enzymatic reaction products and enzyme activity detection were achieved by HPLC-electrochemical detection. The discovery of this enzyme activity in rat’s brain indicates the natural existence of (R)-salsolinol synthase in the brains of humans and rats, and it is distributed in most brain regions of rat with higher activity in soluble proteins extracted from striatum and substantia nigra.


2011 ◽  
Vol 23 (1) ◽  
pp. 20-30 ◽  
Author(s):  
Jing-Jing Li ◽  
Yong-Gui Yuan ◽  
Gang Hou ◽  
Xiang-Rong Zhang

Background: The molecular pathogenesis of depression and psychopharmacology of antidepressants remain elusive. Recent hypotheses suggest that changes in neurogenesis and plasticity may underlie the aetiology of depression. The hippocampus is affected by depression and shows neuronal remodelling during adulthood.Objective: The present study on the adult rat hippocampus, was to evaluate the dose-related effects of chronic venlafaxine on the expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic-AMP response element binding protein (pCREB).Methods: Sprague-Dawley rats were exposed to a variety of chronic unpredictable stressors (CUSs) to establish a depression model. Rats were treated for either 14 or 28 days with venlafaxine (5 and 10 mg/kg, respectively). The hippocampal expression of pCREB and BDNF mRNA and protein was assessed by using immunohistochemistry, western blotting and reverse transcription polymerase chain reaction (RT-PCR).Results: Rats subjected to CUS procedure consumed less sucrose solution compared with non-stressed rats. The CUS influenced exploratory activity resulting in a reduction of the motility counts. Chronic low dose (5 mg/kg, 14 and 28 days), but not high dose (10 mg/kg, 14 and 28 days) of venlafaxine treatment increased the expression of pCREB and BDNF mRNA and protein in the CUS rat hippocampus.Conclusion: Neuronal plasticity-associated proteins such as pCREB and BDNF play an important role both in stress-related depression and in antidepressant effect.


Sign in / Sign up

Export Citation Format

Share Document