scholarly journals An Efficient Method for Generating Murine Hypothalamic Neurospheres for the Study of Regional Neural Progenitor Biology

Endocrinology ◽  
2020 ◽  
Vol 161 (4) ◽  
Author(s):  
Dinushan Nesan ◽  
Hayley F Thornton ◽  
Laronna C Sewell ◽  
Deborah M Kurrasch

Abstract The hypothalamus is a key homeostatic brain region and the primary effector of neuroendocrine signaling. Recent studies show that early embryonic developmental disruption of this region can lead to neuroendocrine conditions later in life, suggesting that hypothalamic progenitors might be sensitive to exogenous challenges. To study the behavior of hypothalamic neural progenitors, we developed a novel dissection methodology to isolate murine hypothalamic neural stem and progenitor cells at the early timepoint of embryonic day 12.5, which coincides with peak hypothalamic neurogenesis. Additionally, we established and optimized a culturing protocol to maintain multipotent hypothalamic neurospheres that are capable of sustained proliferation or differentiation into neurons, oligodendrocytes, and astrocytes. We characterized media requirements, appropriate cell seeding density, and the role of growth factors and sonic hedgehog (Shh) supplementation. Finally, we validated the use of fluorescence activated cell sorting of either Sox2GFPKI or Nkx2.1GFPKI transgenic mice as an alternate cellular isolation approach to enable enriched selection of hypothalamic progenitors for growth into neurospheres. Combined, we present a new technique that yields reliable culturing of hypothalamic neural stem and progenitor cells that can be used to study hypothalamic development in a controlled environment.

2013 ◽  
Vol 218 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Shuhang Xu ◽  
Guofang Chen ◽  
Wen Peng ◽  
Kostja Renko ◽  
Michael Derwahl

Benign and malignant thyroid nodules are more prevalent in females than in males. Experimental data suggest that the proliferative effect of oestrogen rather than polymorphisms is responsible for this gender difference. This study analysed whether both differentiated thyroid cells and thyroid stem and progenitor cells are targets of oestrogen action. In thyroid stem/progenitor cells derived from nodular goitres, the ability of 17β-oestradiol (E2) to induce the formation of thyrospheres and the expression of oestrogen receptors (ERs) and the effect of E2 on the growth and expression of markers of stem cells and thyroid differentiation (TSH receptor, thyroperoxidase, thyroglobulin and sodium iodide symporter (NIS)) were analysed. E2 induced thyrosphere formation, albeit to a lower extent than other growth factors. Thyroid stem and progenitor cells expressed ERα (ESR1) and ERβ (ESR2) with eight times higher expression levels of ERα mRNA compared with the differentiated thyrocytes. E2 was a potent stimulator of the growth of thyroid stem/progenitor cells. In contrast, TSH-induced differentiation of progenitor cells, in particular, the expression of NIS, was significantly inhibited by E2. In conclusion, oestrogen stimulated the growth and simultaneously inhibited the differentiation of thyroid nodule-derived stem/progenitor cells. From these data and based on the concept of cellular heterogeneity, we hypothesize a supportive role of oestrogen in the propagation of thyroid stem/progenitor cells leading to the selection of a progeny of growth-prone cells with a decreased differentiation. These cells may be the origin of hypofunctioning or non-functioning thyroid nodules in females.


Author(s):  
Ignacio M. Larrayoz ◽  
Laura Ochoa-Callejero ◽  
Josune García-Sanmartín ◽  
Carlos Vicario-Abejón ◽  
Alfredo Martínez

2013 ◽  
Vol 41 (8) ◽  
pp. S44
Author(s):  
Praveen Kumar ◽  
Aurélie Baudet ◽  
Ineke De Jong ◽  
Jonas Larsson

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2409-2409
Author(s):  
Yiwen Song ◽  
Sonja Vermeren ◽  
Wei Tong

Abstract ARAP3 is a member of the dual Arf-and-Rho GTPase-activating proteins (GAP) family, functioning specifically to inactivate its substrates Arf6 and RhoA GTPases. ARAP3 is translocated to the plasma membrane after PIP3 binding to the first two of its five PH domains, facilitating its GAP activity in a PI3K-mediated manner. Rho family GTPases are found to play critical roles in many aspects of hematopoietic stem and progenitor cells (HSPCs), such as engraftment and migration, while a role for Arf family GTPases in hematopoiesis is less defined. Previous studies found that either exogenous ARAP3 expression in epithelial cells or RNAi-mediated ARAP3 depletion in endothelial cells disrupts F-actin or lamellipodia formation, respectively, resulting in a cell rounding phenotype and failure to spread. This implies that ARAP3 control of Arf6 and RhoA is tightly regulated, and maintaining precise regulation of ARAP3 levels is crucial to actin organization in the cell. Although ARAP3 was first identified in porcine leukocytes, its function in the hematopoietic system is incompletely understood. Germline deletion of Arap3 results in embryonic lethality due to angiogenic defects. Since endothelial cells are important for the emergence of HSCs during embryonic development, early lethality precludes further studying the role of ARAP3 in definitive hematopoiesis. Therefore, we generated several transgenic mouse models to manipulate ARAP3 in the hematopoietic compartment: (1) Arap3fl/fl;Vav-Cretg conditional knockout mice (CKO) deletes ARAP3 specifically in hematopoietic cells, (2) Arap3fl/fl;VE-Cadherin -Cretg CKO mice selectively deletes ARAP3 in embryonic endothelial cells and thereby hematopoietic cells, and (3) Arap3R302,3A/R302,3A germline knock-in mice (KI/KI) mutates the first PH domain to ablate PI3K-mediated ARAP3 activity in all tissues. We found an almost 100% and 90% excision efficiency in the Vav-Cretg- and VEC-Cretg- mediated deletion of ARAP3 in the bone marrow (BM), respectively. However, the CKO mice appear normal in steady-state hematopoiesis, showing normal peripheral blood (PB) counts and normal distributions of all lineages in the BM. Interestingly, we observed an expansion of the Lin-Scal+cKit+ (LSK) stem and progenitor compartment in the CKO mice. This is due to an increase in the multi-potent progenitor (MPP) fraction, but not the long-term or short-term HSC (LT- or ST-HSC) fractions. Although loss of ARAP3 does not alter the frequency of phenotypically-characterized HSCs, we performed competitive BM transplantation (BMT) studies to investigate the functional impact of ARAP3 deficiency. 500 LSK cells from Arap3 CKO (Arap3fl/fl;Vav-Cretg and Arap3fl/fl;VEC-Cretg) or Arap3fl/fl control littermate donors were transplanted with competitor BM cells into irradiated recipients. We observed similar donor-derived reconstitution and lineage repopulation in the mice transplanted with Arap3fl/fl and Arap3 CKO HSCs. Moreover, Arap3 CKO HSCs show normal reconstitution in secondary transplants. Arap3 KI/KI mice are also grossly normal and exhibit an expanded MPP compartment. Importantly, Arap3KI/KI LSKs show impaired reconstitution compared to controls in the competitive BMT assays. Upon secondary and tertiary transplantation, reconstitution in both PB and BM diminished in the Arap3KI/KI groups, in contrast to sustained reconstitution in the control group. Additionally, we observed a marked skewing towards the myeloid lineage in Arap3KI/KI transplanted secondary and tertiary recipients. These data suggest a defect in HSC function in Arap3KI/KI mice. Myeloid-skewed reconstitution also points to the possibility of selection for “myeloid-primed” HSCs and against “balanced” HSCs, as HSCs exhaust during aging or upon serial transplantation. Taken together, our data suggest that ARAP3 plays a non-cell-autonomous role in HSCs by regulating HSC niche cells. Alternatively, the ARAP3 PH domain mutant that is incapable of locating to the plasma membrane in response to PI3K may exert a novel dominant negative function in HSCs. We are investigating mechanistically how ARAP3 controls HSC engraftment and self-renewal to elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in HSCs. In summary, our studies identify a previously unappreciated role of ARAP3 as a regulator of hematopoiesis and hematopoietic stem and progenitor cell function. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 112 (16) ◽  
pp. 5075-5080 ◽  
Author(s):  
Ryutaro Akiyama ◽  
Hiroko Kawakami ◽  
Julia Wong ◽  
Isao Oishi ◽  
Ryuichi Nishinakamura ◽  
...  

Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.


The Prostate ◽  
2016 ◽  
Vol 76 (6) ◽  
pp. 552-564 ◽  
Author(s):  
W. Nathaniel Brennen ◽  
L. Nelleke Kisteman ◽  
John T. Isaacs

2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Lin Tze Tung ◽  
HanChen Wang ◽  
Jad I. Belle ◽  
Jessica C. Petrov ◽  
David Langlais ◽  
...  

AbstractStem and progenitor cells are the main mediators of tissue renewal and repair, both under homeostatic conditions and in response to physiological stress and injury. Hematopoietic system is responsible for the regeneration of blood and immune cells and is maintained by bone marrow-resident hematopoietic stem and progenitor cells (HSPCs). Hematopoietic system is particularly susceptible to injury in response to genotoxic stress, resulting in the risk of bone marrow failure and secondary malignancies in cancer patients undergoing radiotherapy. Here we analyze the in vivo transcriptional response of HSPCs to genotoxic stress in a mouse whole-body irradiation model and, together with p53 ChIP-Seq and studies in p53-knockout (p53KO) mice, characterize the p53-dependent and p53-independent branches of this transcriptional response. Our work demonstrates the p53-independent induction of inflammatory transcriptional signatures in HSPCs in response to genotoxic stress and identifies multiple novel p53-target genes induced in HSPCs in response to whole-body irradiation. In particular, we establish the direct p53-mediated induction of P2X7 expression on HSCs and HSPCs in response to genotoxic stress. We further demonstrate the role of P2X7 in hematopoietic response to acute genotoxic stress, with P2X7 deficiency significantly extending mouse survival in irradiation-induced hematopoietic failure. We also demonstrate the role of P2X7 in the context of long-term HSC regenerative fitness following sublethal irradiation. Overall our studies provide important insights into the mechanisms of HSC response to genotoxic stress and further suggest P2X7 as a target for pharmacological modulation of HSC fitness and hematopoietic response to genotoxic injury.


2017 ◽  
Vol 16 (4) ◽  
pp. 220-232
Author(s):  
A. V. Pakhomova ◽  
O. V. Pershina ◽  
V. A. Krupin ◽  
L. A. Ermolaeva ◽  
N. N. Ermakova ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1223
Author(s):  
Subramanian Anirudh ◽  
Angelika Rosenberger ◽  
Elke Schwarzenberger ◽  
Carolin Schaefer ◽  
Herbert Strobl ◽  
...  

Dendritic cells (DCs) are crucial effectors of the immune system, which are formed from hematopoietic stem and progenitor cells (HSPCs) by a multistep process regulated by cytokines and distinct transcriptional mechanisms. C/EBPα is an important myeloid transcription factor, but its role in DC formation is not well defined. Using a CebpaCre-EYFP reporter mouse model, we show that the majority of splenic conventional DCs are derived from Cebpa-expressing HSPCs. Furthermore, HSPCs isolated from Cebpa knockout (KO) mice exhibited a marked reduced ability to form mature DCs after in vitro culture with FLT3L. Differentiation analysis revealed that C/EBPα was needed for the formation of monocytic dendritic progenitors and their transition to common dendritic progenitors. Gene expression analysis and cytokine profiling of culture supernatants showed significant downregulation of inflammatory cytokines, including TNFα and IL-1β as well as distinct chemokines in KO HSPCs. In addition, TNFα-induced genes were among the most dysregulated genes in KO HSPCs. Intriguingly, supplementation of in vitro cultures with TNFα at least partially rescued DC formation of KO HSPCs, resulting in fully functional, mature DCs. In conclusion, these results reveal an important role of C/EBPα in early DC development, which in part can be substituted by the inflammatory cytokine TNFα.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4156-4156
Author(s):  
Andreas Burchert ◽  
Barbara Denecke ◽  
Tobias Haerle ◽  
Andreas Neubauer

Abstract CD82 belongs to the tetraspanin superfamily, members of which regulate multiple aspects of cell biology such as T-cell activation, proliferation, differentiation, and adhesion.We have previously shown expression of CD82 on hematopoietic progenitor cells. Here we were seeking to shed light on the functional role of CD82 in hematopoiesis. First, we found that CD82 expression is strongly associated with an erythroid committment as exclusively the CD82bright fraction but not the CD82medium or CD82dim fraction of CD34+ cells gave rise to erythroid colony forming units (CFU). In order to manipulate CD82 activity, we used as surrogate ligand, a previously described, CD82-activating monoclonal antibody (moAb), clone 50F11, to activate CD82 on hematopoietic precursors. We found that 50F11, but not another CD82 specific antibody clone, BL-2, specifically induced tyrosine phosphorylation of CD34+ cells. In Dexter-type long-term cultures (D-LTC) 50F11, and not IgG1 isotype control moAbs significantly inhibited myelopoiesis and the number of CD34+ clonogenic progenitors. Moreover, in long term culture initiating cell (LTC-IC) assays, 50F11as compared to isotype control antibodies substantially inhibited, but not entirely abolished, the number of 5 week-LTC-IC′s, indicating that CD82 activation inhibits progenitor - and stem cell proliferation or self renewal. Finally, plastic immobilized 50F11-antibodies caused a time-, and concentration dependent induction of adhesion of CD34+ cells, which was associated with the formation of F-actin and development of multipolar extensions. Finally, CD82 ligation by 50F11 caused a statistically significant down-regulation of the integrin CD49d (p=0,036) and CD62L (p=0,010). Together, it is shown that CD34+/CD82high cells characterize an erythroid committment implying a role for this tetraspanin in erythroid hematopoiesis. Activation of CD82 induces adhesion and negatively regulates proliferation of adult stem- and progenitor cells. This implicates a so far unknown role for CD82 in the regulation of early hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document