primary effector
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 22 (23) ◽  
pp. 13098
Author(s):  
Yumiko Tanaka ◽  
Ayaka Nakao ◽  
Yasunobu Miyake ◽  
Yukina Higashi ◽  
Riho Tanigaki ◽  
...  

The T-box transcription factor Eomesodermin (Eomes) promotes the expression of interferon-γ (IFN-γ). We recently reported that the small molecule inhibitors, TPCA-1 and IKK-16, which target nuclear factor κB (NF-κB) activation, moderately reduced Eomes-dependent IFN-γ expression in mouse lymphoma BW5147 cells stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (IM). In the present study, we investigated the direct effects of NF-κB on IFN-γ expression in mouse lymphoma EL4 cells and primary effector T cells. Eomes strongly promoted IFN-γ expression and the binding of RelA and NFATc2 to the IFN-γ promoter when EL4 cells were stimulated with PMA and IM. Neither TPCA-1 nor IKK-16 reduced IFN-γ expression; however, they markedly decreased interleukin (IL)-2 expression in Eomes-transfected EL4 cells. Moreover, TPCA-1 markedly inhibited the binding of RelA, but not that of Eomes or NFATc2 to the IFN-γ promoter. In effector CD4+ and CD8+ T cells activated with anti-CD3 and anti-CD28 antibodies, IFN-γ expression induced by PMA and A23187 was not markedly decreased by TPCA-1 or IKK-16 under conditions where IL-2 expression was markedly reduced. Therefore, the present results revealed that NF-κB is dispensable for IFN-γ expression induced by PMA and calcium ionophores in EL4 cells expressing Eomes and primary effector T cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiang Liu ◽  
Shihao Ding ◽  
Pinghuang Liu

Pyroptosis is lytic, programmed cell death and plays a critical role against microbial invasion, functioning as an innate immune effector mechanism. The pore-forming protein gasdermin D (GSDMD), a member of gasdermin family proteins, is a primary effector of pyroptosis. The cleavage of inflammasome-associated inflammatory caspases activates GSDMD to liberate the N-terminal effector domain from the C-terminal inhibitory domain and form pores in the cellular plasma membrane. Emerging evidence shows that the pore-forming activity of GSDMD beyond pyroptosis and modifies non-lytic cytosolic protein secretion in living cells and innate immunity. While the essential roles of GSDMD in bacterial infection and cancer have been widely investigated, the importance of GSDMD in virus infection, including coronaviruses, remains elusive. Here, we review the current literature regarding the activation and functions of GSDMD during virus infections. Last, we further discuss the roles of GSDMD and the therapeutic potential of targeting this GSDMD pore-forming activity in coronavirus diseases.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1392
Author(s):  
Peter Lawrence Smith ◽  
Katarzyna Piadel ◽  
Angus George Dalgleish

Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 964
Author(s):  
Simone Bauer ◽  
Leonie Ratz ◽  
Doreen Heckmann-Nötzel ◽  
Adam Kaczorowski ◽  
Markus Hohenfellner ◽  
...  

About 50% of prostate cancer (PCa) tumors are TMPRSS2:ERG (T2E) fusion-positive (T2E+), but the role of T2E in PCa progression is not fully understood. We were interested in investigating epigenomic alterations associated with T2E+ PCa. Using different sequencing cohorts, we found several transcripts of the miR-449 cluster to be repressed in T2E+ PCa. This repression correlated strongly with enhanced expression of NOTCH and several of its target genes in TCGA and ICGC PCa RNA-seq data. We corroborated these findings using a cellular model with inducible T2E expression. Overexpression of miR-449a in vitro led to silencing of genes associated with NOTCH signaling (NOTCH1, HES1) and HDAC1. Interestingly, HDAC1 overexpression led to the repression of HES6, a negative regulator of the transcription factor HES1, the primary effector of NOTCH signaling, and promoted cell proliferation by repressing the cell cycle inhibitor p21. Inhibition of NOTCH as well as knockdown of HES1 reduced the oncogenic properties of PCa cell lines. Using tissue microarray analysis encompassing 533 human PCa cores, ERG-positive areas exhibited significantly increased HES1 expression. Taken together, our data suggest that an epigenomic regulatory network enhances NOTCH signaling and thereby contributes to the oncogenic properties of T2E+ PCa.


2021 ◽  
Vol 11 ◽  
Author(s):  
David Rotella ◽  
John Siekierka ◽  
Purnima Bhanot

The primary effector of cGMP signaling in Plasmodium is the cGMP-dependent protein kinase (PKG). Work in human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei has provided biological validation of P. falciparum PKG (PfPKG) as a drug target for treating and/or protecting against malaria. PfPKG is essential in the asexual erythrocytic and sexual cycles as well as the pre-erythrocytic cycle. Medicinal chemistry efforts, both target-based and phenotype-based, have targeted PfPKG in the past few years. This review provides a brief overview of their results and challenges.


Author(s):  
Yunhao Zhai ◽  
Javier Celis-Gutierrez ◽  
Guillaume Voisinne ◽  
Daiki Mori ◽  
Laura Girard ◽  
...  

Endocrinology ◽  
2020 ◽  
Vol 161 (4) ◽  
Author(s):  
Dinushan Nesan ◽  
Hayley F Thornton ◽  
Laronna C Sewell ◽  
Deborah M Kurrasch

Abstract The hypothalamus is a key homeostatic brain region and the primary effector of neuroendocrine signaling. Recent studies show that early embryonic developmental disruption of this region can lead to neuroendocrine conditions later in life, suggesting that hypothalamic progenitors might be sensitive to exogenous challenges. To study the behavior of hypothalamic neural progenitors, we developed a novel dissection methodology to isolate murine hypothalamic neural stem and progenitor cells at the early timepoint of embryonic day 12.5, which coincides with peak hypothalamic neurogenesis. Additionally, we established and optimized a culturing protocol to maintain multipotent hypothalamic neurospheres that are capable of sustained proliferation or differentiation into neurons, oligodendrocytes, and astrocytes. We characterized media requirements, appropriate cell seeding density, and the role of growth factors and sonic hedgehog (Shh) supplementation. Finally, we validated the use of fluorescence activated cell sorting of either Sox2GFPKI or Nkx2.1GFPKI transgenic mice as an alternate cellular isolation approach to enable enriched selection of hypothalamic progenitors for growth into neurospheres. Combined, we present a new technique that yields reliable culturing of hypothalamic neural stem and progenitor cells that can be used to study hypothalamic development in a controlled environment.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Takashi Ohnishi ◽  
Katsuhisa Yamada ◽  
Koji Iwasaki ◽  
Takeru Tsujimoto ◽  
Hideaki Higashi ◽  
...  

AbstractApproximately 40% of people under 30 and over 90% of people 55 or older suffer from moderate-to-severe levels of degenerative intervertebral disc (IVD) disease in their lumbar spines. Surgical treatments are sometimes effective; however, the treatment of back pain related to IVD degeneration is still a challenge; therefore, new treatments are necessary. Apoptosis may be important in IVD degeneration because suppressing cell apoptosis inside the IVD inhibits degeneration. Caspase-3, the primary effector of apoptosis, may be a key treatment target. We analyzed caspase-3’s role in two different types of IVD degeneration using caspase-3 knockout (Casp-3 KO) mice. Casp-3 KO delayed IVD degeneration in the injury-induced model but accelerated it in the age-induced model. Our results suggest that this is due to different pathological mechanisms of these two types of IVD degeneration. Apoptosis was suppressed in the IVD cells of Casp-3 KO mice, but cellular senescence was enhanced. This would explain why the Casp-3 KO was effective against injury-induced, but not age-related, IVD degeneration. Our results suggest that short-term caspase-3 inhibition could be used to treat injury-induced IVD degeneration.


2019 ◽  
Vol 17 (7) ◽  
pp. 728-740 ◽  
Author(s):  
Seung-jae Kim ◽  
Huan J. Chang ◽  
Michael V. Volin ◽  
Sadiq Umar ◽  
Katrien Van Raemdonck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document