scholarly journals ERRATUM FOR “Dynorphin and GABAA Receptor Signaling Contribute to Progesterone’s Inhibition of the LH Surge in Female Mice”

Endocrinology ◽  
2020 ◽  
Vol 161 (7) ◽  
Endocrinology ◽  
2020 ◽  
Vol 161 (5) ◽  
Author(s):  
Yali Liu ◽  
Xiaofeng Li ◽  
Xi Shen ◽  
Deyana Ivanova ◽  
Geffen Lass ◽  
...  

Abstract Progesterone can block estrogen-induced luteinising hormone (LH) surge secretion and can be used clinically to prevent premature LH surges. The blocking effect of progesterone on the LH surge is mediated through its receptor in the anteroventral periventricular nucleus (AVPV) of the hypothalamus. However, the underlying mechanisms are unclear. The preovulatory LH surge induced by estrogen is preceded by a significant reduction in hypothalamic dynorphin and gamma-aminobutyric acid (GABA) release. To test the detailed roles of dynorphin and GABA in an LH surge blockade by progesterone, ovariectomized and 17β-estradiol capsule-implanted (OVX/E2) mice received simultaneous injections of estradiol benzoate (EB) and progesterone (P) or vehicle for 2 consecutive days. The LH level was monitored from 2:30 pm to 8:30 pm at 30-minute intervals. Progesterone coadministration resulted in the LH surge blockade. A continuous microinfusion of the dynorphin receptor antagonist nor-BNI or GABAA receptor antagonist bicuculline into the AVPV from 3:00 pm to 7:00 pm reversed the progesterone-mediated blockade of the LH surge in 7 of 9 and 6 of 10 mice, respectively. In addition, these LH surges started much earlier than the surge induced by estrogen alone. However, 5 of 7 progesterone-treated mice did not show LH surge secretion after microinfusion with the GABAB receptor antagonist CGP-35348. Additionally, peripheral administration of kisspeptin-54 promotes LH surge-like release in progesterone treated mice. These results demonstrated that the progesterone-mediated suppression of the LH surge is mediated by an increase in dynorphin and GABAA receptor signaling acting though kisspeptin neurons in the AVPV of the hypothalamus in female mice.


Endocrinology ◽  
2011 ◽  
Vol 152 (4) ◽  
pp. 1551-1561 ◽  
Author(s):  
Janardhan P. Bhattarai ◽  
Seon Ah Park ◽  
Jin Bong Park ◽  
So Yeong Lee ◽  
Allan E. Herbison ◽  
...  

Abstract It is well established that the GABAA receptor plays an important role in regulating the electrical excitability of GnRH neurons. Two different modes of GABAA receptor signaling exist: one mediated by synaptic receptors generating fast (phasic) postsynaptic currents and the other mediated by extrasynaptic receptors generating a persistent (tonic) current. Using GABAA receptor antagonists picrotoxin, bicuculline methiodide, and gabazine, which differentiate between phasic and tonic signaling, we found that ∼50% of GnRH neurons exhibit an approximately 15-pA tonic GABAA receptor current in the acute brain slice preparation. The blockade of either neuronal (NO711) or glial (SNAP-5114) GABA transporter activity within the brain slice revealed the presence of tonic GABA signaling in ∼90% of GnRH neurons. The GABAA receptor δ subunit is only found in extrasynaptic GABAA receptors. Using single-cell RT-PCR, GABAA receptor δ subunit mRNA was identified in GnRH neurons and the δ subunit–specific agonist 4,5,6,7-tetrahydroisoxazolo [5,4-c] pyridin-3-ol was found to activate inward currents in GnRH neurons. Perforated-patch clamp studies showed that 4,5,6,7-tetrahydroisoxazolo [5,4-c] pyridin-3-ol exerted the same depolarizing or hyperpolarizing effects as GABA on juvenile and adult GnRH neurons and that tonic GABAA receptor signaling regulates resting membrane potential. Together, these studies reveal the presence of a tonic GABAA receptor current in GnRH neurons that controls their excitability. The level of tonic current is dependent, in part, on neuronal and glial GABA transporter activity and mediated by extrasynaptic δ subunit–containing GABAA receptors.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119995 ◽  
Author(s):  
Sara A. DiVall ◽  
Danny Herrera ◽  
Bonnie Sklar ◽  
Sheng Wu ◽  
Fredric Wondisford ◽  
...  

2013 ◽  
Vol 305 (6) ◽  
pp. E717-E726 ◽  
Author(s):  
Xiaobing B. Cheng ◽  
Mark Jimenez ◽  
Reena Desai ◽  
Linda J. Middleton ◽  
Shai R. Joseph ◽  
...  

Homozygous androgen receptor (AR)-knockout (ARKO) female mice are subfertile due to both intra- and extraovarian (neuroendocrine) defects as defined by ovary transplantation. Using ARKO mice, this study set out to reveal the precise AR-regulated pathways required for optimal androgen-regulated ovulation and fertility. ARKO females exhibit deficient neuroendocrine negative feedback, with a reduced serum luteinizing hormone (LH) response to ovariectomy (OVX) ( P < 0.01). Positive feedback is also altered as intact ARKO females, at late proestrus, exhibit an often mistimed endogenous ovulatory LH surge. Furthermore, at late proestrus, intact ARKO females display diminished preovulatory serum estradiol (E2; P < 0.01) and LH ( P < 0.05) surge levels and reduced Kiss1 mRNA expression in the anteroventral periventricular nucleus ( P < 0.01) compared with controls. However, this reduced ovulatory LH response in intact ARKO females can be rescued by OVX and E2 priming or treatment with endogenous GnRH. These findings reveal that AR regulates the negative feedback response to E2, E2-positive feedback is compromised in ARKO mice, and AR-regulated negative and positive steroidal feedback pathways impact on intrahypothalamic control of the kisspeptin/GnRH/LH cascade. In addition, intraovarian AR-regulated pathways controlling antral to preovulatory follicle dynamics are disrupted because adult ARKO ovaries collected at proestrus have small antral follicles with reduced oocyte/follicle diameter ratios ( P < 0.01) and increased proportions of unhealthy large antral follicles ( P < 0.05) compared with controls. As a consequence of aberrant follicular growth patterns, proestrus ARKO ovaries also exhibit fewer preovulatory follicle ( P < 0.05) and corpora lutea numbers ( P < 0.01). However, embryo development to the blastocyst stage is unchanged in ARKO females, and hence, the subfertility is a consequence of reduced ovulations and not altered embryo quality. These findings reveal that the AR has a functional role in neuroendocrine regulation and timing of the ovulatory LH surge as well as antral/preovulatory follicle development.


2010 ◽  
Vol 107 (52) ◽  
pp. 22693-22698 ◽  
Author(s):  
C. Mayer ◽  
M. Acosta-Martinez ◽  
S. L. Dubois ◽  
A. Wolfe ◽  
S. Radovick ◽  
...  

2011 ◽  
Vol 31 (47) ◽  
pp. 17103-17112 ◽  
Author(s):  
J. G. Parker ◽  
M. J. Wanat ◽  
M. E. Soden ◽  
K. Ahmad ◽  
L. S. Zweifel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document