scholarly journals The Relation between Bone Mineral Density, Insulin-Like Growth Factor I, Lipoprotein (a), Body Composition, and Muscle Strength in Adolescent Males

1999 ◽  
Vol 84 (9) ◽  
pp. 3025-3029 ◽  
Author(s):  
Kim Thorsen ◽  
Peter Nordström ◽  
Ronny Lorentzon ◽  
Gösta H. Dahlén

Osteoporosis is the most common metabolic bone disease. A low peak bone mass is regarded a risk factor for osteoporosis. Heredity, physical activity, and nutrition are regarded important measures for the observed variance in peak bone mass. Lp(a) lipoprotein is a well-known risk factor for atherosclerosis. Serum insulin-like growth factor I (IGF-I) has been found to be increased in males with early cardiovascular disease. In this study, we evaluated the association between bone mass, body constitution, muscle strength, Lp(a), and IGF-I in 47 Caucasian male adolescents (mean age, 16.9 yr). Bone mineral density (BMD) and body composition were measured by dual x-ray absorptiometry, muscle strength of thigh using an isokinetic dynamometer, IGF-I by RIA, and Lp(a) by enzyme-linked immunosorbent assay. IGF-I was only associated with Lp(a) (r = 0.38, P < 0.01). Lp(a) was related to total body (r= 0.40, P < 0.01), skull (r = 0.45, P < 0.01), and femoral neck BMD (r = 0.44, P < 0.01). Lp(a) was also related to fat mass (r = 0.34, P < 0.05) and muscle strength (r = 0.30–0.42, P < 0.05). After multiple regression and principal component (PC) analysis, the so-called PC body size (weight, fat mass, lean body mass, and muscle strength) was the most significant predictor of BMD (β = 0.28–0.51, P < 0.05–0.01), followed by the so-called PC physical activity (β = 0.28–0.38, P < 0.05–0.01, weight-bearing locations). However, the PC analysis confirmed that Lp(a) was an independent predictor of total body, skull, and femoral neck BMD (β = 0.33–0.36, P < 0.01). The present investigation confirms that BMD, body size, and muscle strength are closely related and that the level of physical activity is a major determinant of BMD. However, the positive relation of Lp(a), a major risk factor for cardiovascular disease, to BMD has not previously been described. The importance of this observation has to be further investigated.

2008 ◽  
Vol 93 (7) ◽  
pp. 2594-2601 ◽  
Author(s):  
Thierry Chevalley ◽  
Jean-Philippe Bonjour ◽  
Serge Ferrari ◽  
Rene Rizzoli

Abstract Background: Shorter estrogen exposure from puberty onset to peak bone mass attainment may explain how late menarche is a risk factor for osteoporosis. The influence of menarcheal age (MENA) on peak bone mass, cortical, and trabecular microstructure was studied in 124 healthy women aged 20.4 ± 0.6 (sd) yr. Methods: At distal radius, areal bone mineral density (aBMD) was measured by dual-energy x-ray absorptiometry, and volumetric bone mineral density (BMD) and microstructure were measured by high-resolution peripheral computerized tomography, including: total, cortical, and trabecular volumetric BMD and fraction; trabecular number, thickness, and spacing; cortical thickness (CTh); and cross-sectional area (CSA). Results: Median MENA was 12.9 yr. Mean aBMD T score of the whole cohort was slightly positive. aBMD was inversely correlated to MENA for total radius (R = −0.21; P = 0.018), diaphysis (R = −0.18; P = 0.043), and metaphysis (R = −0.19; P = 0.031). Subjects with MENA more than the median [LATER: 14.0 ± 0.7 (±sd) yr] had lower aBMD than those with MENA less than the median (EARLIER: 12.1 ± 0.7 yr) in total radius (P = 0.026), diaphysis (P = 0.042), and metaphysis (P = 0.046). LATER vs. EARLIER displayed lower total volumetric BMD (315 ± 54 vs. 341 ± 56 mg HA/cm3; P = 0.010), cortical volumetric BMD (874 ± 49 vs. 901 ± 44 mg HA/cm3; P = 0.003), and CTh (774 ± 170 vs. 849 ± 191 μm; P = 0.023). CTh was inversely related to CSA (R = −0.46; P < 0.001). In LATER reduced CTh was associated with 5% increased CSA. Conclusions: In healthy young adult women, a 1.9-yr difference in mean MENA was associated with lower radial aBMD T score, lower CTh without reduced CSA, a finding compatible with less endocortical accrual. It may explain how late menarche is a risk factor for forearm osteoporosis.


1997 ◽  
Vol 12 (8) ◽  
pp. 1262-1271 ◽  
Author(s):  
Suzanne C. Ho ◽  
Eric Wong ◽  
Sieu GAEN Chan ◽  
Joseph Lau ◽  
Cynthia Chan ◽  
...  

2007 ◽  
Vol 156 (1) ◽  
pp. 55-64 ◽  
Author(s):  
G Götherström ◽  
B-Å Bengtsson ◽  
I Bosæus ◽  
G Johannsson ◽  
J Svensson

There are few studies that have determined the effects of long-term GH replacement on bone mineral density (BMD) in GH-deficient (GHD) adults. In this study, the effects of 10 years of GH replacement on BMD were assessed in 87 GHD adults using dual energy X-ray absorptiometry (DEXA). The results show that GH replacement induced a sustained increase in BMD at all the skeletal sites measured. Introduction: Little is known of the effect of more than 5 years of GH replacement therapy on bone metabolism in GHD adults. Patients and methods: In this prospective, open-label, single-center study, which included 87 consecutive adults (52 men and 35 women; mean age of 44.1 (range 22–74) years) with adulthood onset GHD, the effect of 10 years of GH replacement on BMD was determined. Results: The mean initial dose of GH was 0.98 mg/day. The dose was gradually lowered and after 10 years the mean dose was 0.47 mg/day. The mean insulin-like growth factor-I (IGF-I) SDS increased from 1.81 at baseline to 1.29 at study end. The GH replacement induced a sustained increase in total, lumbar (L2–L4) and femur neck BMD, and bone mineral content (BMC) as measured by DEXA. The treatment response in IGF-I SDS was more marked in men, whereas women had a more marked increase in the total body BMC and the total body z-score. There was a tendency for women on estrogen treatment to have a larger increase in bone mass and density compared with women without estrogen replacement. Conclusions: Ten years of GH replacement in hypopituitary adults induced a sustained, and in some variables even a progressive, increase in bone mass and bone density. The study results also suggest that adequate estrogen replacement is needed in order to have an optimal response in BMD in GHD women.


2018 ◽  
Vol 104 (3) ◽  
pp. 892-899 ◽  
Author(s):  
Joseph M Kindler ◽  
Andrea J Lobene ◽  
Kara A Vogel ◽  
Berdine R Martin ◽  
Linda D McCabe ◽  
...  

Abstract Context Insulin resistance is an adverse health outcome that accompanies obesity. Fat mass is negatively associated with the bone mass after adjustment for confounders. Insulin resistance might be an intermediary in this relationship. Objective To determine whether insulin resistance is an intermediary in the relationship between adiposity and bone mass in adolescents. Design Cross-sectional secondary analysis of baseline data from a previous randomized trial. Setting University research facility. Participants A total of 240 adolescents (68% female), aged 7 to 15 years. Main Outcome Measures Using dual energy x-ray absorptiometry, bone mineral content (BMC), areal bone mineral density, lean mass, and fat mass were measured. Skeletal sites of interest included the total body and lumbar spine (LS). Waist circumference was measured using an anthropometric tape measure. Insulin and glucose were measured in fasting sera, and the homeostasis model assessment of insulin resistance (HOMA-IR) was calculated. Path analysis was performed to determine whether the relationship between adiposity and bone was mediated through insulin resistance. Results Fat mass (r = 0.467; P < 0.001) and waist circumference (r = 0.487; P < 0.001) correlated positively with HOMA-IR. Controlling for race, sex, maturation, lean mass, and height, fat mass, waist circumference, and HOMA-IR were negatively associated with LS BMC and total body areal bone mineral density (P < 0.05 for all). Additionally, path models for fat mass (95% CI, −5.893 to −0.956) and waist circumference (95% CI, −15.473 to −2.124) showed a negative relationship with LS BMC via HOMA-IR. Conclusions These results support an intermediary role of insulin resistance in the relationship between adiposity and LS bone mass.


Sign in / Sign up

Export Citation Format

Share Document