scholarly journals RNA Decay Controls the Kinetics of the Angiotensin II Gene Expression Response

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A508-A509
Author(s):  
Kimberly Wellman ◽  
Rui Fu ◽  
Amber Baldwin ◽  
Kent Riemondy ◽  
Neelanjan Mukherjee

Abstract Complex cellular resonses require the temporal coordination of stimulus-induced gene expression programs. Angiotensin II (AngII) is the active 8 amino acid peptide in the renin-angiotensin-aldosterone system that controls blood pressure and fluid balance. AngII binds to type I angiotensin receptor in the adrenal cortex to initiate a cascade of temporally coordinated events leading to the production of aldosterone, a master regulator of blood pressure and volume. We stimulated a steroidogenic human cell line (H295R) with AngII and performed RNA-seq at twelve points. We identified twelve distict temporally distinct groups of gene expression responses each encoding functionally related proteins important for various steps of aldosterone productionl. Interstingly, the shape of the impulse response suggested a key role for RNA decay. Indeed, RNA decay rates in unstimulated H295R cells strongly correlated with the amplitude and peakiness of the gene expression response for each group of genes. We also found evidence for increases in RNA decay during the AngII response. Next, we selected candidate RBPs based on motif finding, adrenal specific expression, and AngII responsiveness. We performed an siRNA knockdown screen on these 22 candidates to identify RBPs that regulate aldosterone levels. Eight of these RBPs exhibited statistically significant changes in aldosterone for at least two independent siRNAs. Interestingly, multiple RBPs that promote RNA decay were found to suppress aldosterone production and induced in response to AngII-stimulation. These RBPs could be responsible for our observed increases in RNA decay. Altogether, these data support a model in which RNA decay is a critical regulator of the timing and strength of AngII-induced gene expression and ultimately aldosterone production.

2021 ◽  
Author(s):  
Rui Fu ◽  
Kimberly Wellman ◽  
Amber Baldwin ◽  
Juilee Rege ◽  
Kathryn Walters ◽  
...  

ABSTRACTAngiotensin II (AngII) binds to the type I angiotensin receptor in the adrenal cortex to initiate a cascade of events leading to the production of aldosterone, a master regulator of blood pressure. Despite extensive characterization of the transcriptional and enzymatic control of adrenocortical steroidogenesis, there are still major gaps in our knowledge related to precise regulation of AII-induced gene expression kinetics. Specifically, we do not know the regulatory contribution of RNA-binding proteins (RBPs) and RNA decay, which can control the timing of stimulus-induced gene expression. To investigate this question, we performed a high-resolution RNA-seq time course of the AngII stimulation response and 4-thiouridine pulse labeling in a steroidogenic human cell line (H295R). We identified twelve temporally distinct gene expression responses that contained mRNA encoding proteins known to be important for various steps of aldosterone production, such as cAMP signaling components and steroidogenic enzymes. AngII response kinetics for many of these mRNAs revealed a coordinated increase in both synthesis and decay. These findings were validated in primary human adrenocortical cells stimulated ex vivo with AngII. Using a candidate siRNA screen, we identified a subset of RNA-binding protein and RNA decay factors that activate or repress AngII-stimulated aldosterone production. Among the repressors of aldosterone were BTG2, which promotes deadenylation and global RNA decay. BTG2 was induced in response to AngII stimulation and promoted the repression of mRNAs encoding pro-steroidogenic factors indicating the existence of an incoherent feedforward loop controlling aldosterone homeostasis. Together, these data support a model in which coordinated increases in transcription and regulated RNA decay facilitates the major transcriptomic changes required to implement a pro-steroidogenic gene expression program that is temporally restricted to prevent aldosterone overproduction.


2011 ◽  
Vol 80 (3) ◽  
pp. 968-974 ◽  
Author(s):  
Rachel D. Hill ◽  
Julia S. Gouffon ◽  
Arnold M. Saxton ◽  
Chunlei Su

Toxoplasma gondiiis the causative agent of toxoplasmosis in human and animals. In a mouse model,T. gondiistrains can be divided into three groups, including the virulent, intermediately virulent, and nonvirulent. The clonal type I, II, and IIIT. gondiistrains belong to these three groups, respectively. To better understand the basis of virulence phenotypes, we investigated mouse gene expression responses to the infection of differentT. gondiistrains at day 5 after intraperitoneal inoculation with 500 tachyzoites. The transcriptomes of mouse peritoneal cells showed that 1,927, 1,573, and 1,009 transcripts were altered more than 2-fold by type I, II, and III infections, respectively, and that the majority of altered transcripts were shared. Overall transcription patterns were similar in type I and type II infections, and both had greater changes than infection with type III. Quantification of parasite burden in mouse spleens showed that the burden with type I infection was 1,000 times higher than that of type II and that the type II burden was 20 times higher than that of type III. Fluorescence-activated cell sorting revealed that type I and II infections had comparable macrophage populations, and both were higher than the population with type III infection. In addition, type I infection had a higher percentage of neutrophils than type II and III infections. Taken together, these results suggested that there is a common gene expression response toT. gondiiinfection in mice. This response is further modified by parasite strain-specific factors that determine their distinct virulence phenotypes.


2011 ◽  
Vol 55 (10) ◽  
pp. 1466-1474 ◽  
Author(s):  
Yvonne G. J. van Helden ◽  
Roger W. L. Godschalk ◽  
Johannes von Lintig ◽  
Georg Lietz ◽  
Jean-Francois Landrier ◽  
...  

2020 ◽  
Vol 267 ◽  
pp. 115483
Author(s):  
Marco Gerdol ◽  
Andrea Visintin ◽  
Sara Kaleb ◽  
Francesca Spazzali ◽  
Alberto Pallavicini ◽  
...  

2021 ◽  
Author(s):  
Phillip J Dexheimer ◽  
Mario Pujato ◽  
Krishna Roskin ◽  
Matthew T Weirauch

AbstractMotivationHuman viruses cause significant mortality, morbidity, and economic disruption worldwide. The human gene expression response to viral infection can yield important insights into the detrimental effects to the host. To date, hundreds of studies have performed genome-scale profiling of the effect of viral infection on human gene expression. However, no resource exists that aggregates human expression results across multiple studies, viruses, and tissue types.ResultsWe developed the Virus Expression Database (VExD), a comprehensive curated resource of transcriptomic studies of viral infection in human cells. We have processed all studies within VExD in a uniform manner, allowing users to easily compare human gene expression changes across conditions.Availability and ImplementationVExD is freely accessible at https://vexd.cchmc.org for all modern web browsers. An Application Programming Interface (API) for VExD is also available. The source code is available at https://github.com/pdexheimer/[email protected], [email protected]


2019 ◽  
Author(s):  
Maritere Urioistegui-Arcos ◽  
Rodrigo Aguayo-Ortiz ◽  
María del Pilar Valencia-Morales ◽  
Erika Melchy-Pérez ◽  
Yvonne Rosenstein ◽  
...  

AbstractDisruption of the enzymatic activities of the transcription factor TFIIH by Triptolide (TPL) or THZ1 could be used against cancer. Here, we used an oncogenesis model to compare the effect of TFIIH inhibitors between transformed cells and their progenitors. We report that tumour cells exhibited highly increased sensitivity to TPL or THZ1 and that the combination of both had an additive effect. TPL affects the interaction between XPB and P52, causing a reduction in the levels of XPB, P52, and P8, but not other TFIIH subunits. RNA-Seq and RNAPII-ChIP-Seq experiments showed that although the levels of many transcripts were reduced, the levels of a significant number were increased after TPL treatment, with maintained or increased RNAPII promoter occupancy. A significant number of these genes encode for factors that have been related to tumour growth and metastasis. Some of these genes were also overexpressed in response to THZ1, which depletion enhances the toxicity of TPL and are possible new targets against cancer.


2004 ◽  
Vol 19 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Damian G. Romero ◽  
Maria Plonczynski ◽  
Gaston R. Vergara ◽  
Elise P. Gomez-Sanchez ◽  
Celso E. Gomez-Sanchez

Evidence for the dysregulation of aldosterone synthesis in cardiovascular pathophysiology has renewed interest in the control of its production. Cellular mechanisms by which angiotensin II (ANG II) stimulates aldosterone synthesis in the adrenal zona glomerulosa are incompletely understood. To elucidate the mechanism of intracellular signaling by ANG II stimulation in the adrenal, we have studied immediate-early regulated genes in human adrenal H295R cells using cDNA microarrays. H295R cells were stimulated with ANG II for 3 h. Gene expression was analyzed by microarray technology and validated by real-time RT-PCR. Eleven genes were found to be upregulated by ANG II. These encode the proteins for ferredoxin, Nor1, Nurr1, c6orf37, CAT-1, A20, MBLL, M-Ras, RhoB, GADD45α, and a novel protein designated FLJ45273 . Maximum expression levels for all genes occurred 3–6 h after ANG II stimulation. This increase was dose dependent and preceded maximal aldosterone production. Other aldosterone secretagogues, K+and endothelin-1 (ET-1), also induced the expression of these genes with variable efficiency depending on the gene and with lower potency than ANG II. ACTH had negligible effect on gene expression except for the CAT-1 and Nurr1 genes. These ANG II-stimulated genes are involved in several cellular functions and are good candidate effectors and regulators of ANG II-mediated effects in adrenal zona glomerulosa.


Sign in / Sign up

Export Citation Format

Share Document