scholarly journals Advanced Glycation End Products (AGEs), Receptor for AGEs, Diabetes, and Bone: Review of the Literature

2019 ◽  
Vol 3 (10) ◽  
pp. 1799-1818 ◽  
Author(s):  
Kamyar Asadipooya ◽  
Edilfavia Mae Uy

AbstractDiabetes compromises bone cell metabolism and function, resulting in increased risk of fragility fracture. Advanced glycation end products (AGEs) interact with the receptor for AGEs (RAGE) and can make a meaningful contribution to bone cell metabolism and/or alter function. Searches in PubMed using the key words “advanced glycation end-product,” “RAGE,” “sRAGE,” “bone,” and “diabetes” were made to explain some of the clinical outcomes of diabetes in bone metabolism through the AGE–RAGE signaling pathway. All published clinical studies were included in tables. The AGE–RAGE signaling pathway participates in diabetic complications, including diabetic osteopathy. Some clinical results in diabetic patients, such as reduced bone density, suppressed bone turnover markers, and bone quality impairment, could be potentially due to AGE–RAGE signaling consequences. However, the AGE–RAGE signaling pathway has some helpful roles in the bone, including an increase in osteogenic function. Soluble RAGE (sRAGE), as a ligand decoy, may increase in either conditions of RAGE production or destruction, and then it cannot always reflect the AGE–RAGE signaling. Recombinant sRAGE can block the AGE–RAGE signaling pathway but is associated with some limitations, such as accessibility to AGEs, an increase in other RAGE ligands, and a long half-life (24 hours), which is associated with losing the beneficial effect of AGE/RAGE. As a result, sRAGE is not a helpful marker to assess activity of the RAGE signaling pathway. The recombinant sRAGE cannot be translated into clinical practice due to its limitations.

Author(s):  
Hussein Saad Alzadi ◽  
Naza Mohammed Ali Mahmood

Diabetes mellitus (DM) compromises cell metabolism and function in many organs, resulting in increased risks of complications in many organs such as kidney, nervous system, eye, and fragility fractures. Advanced glycation end products (AGEs) are chemical moieties produced during long-term hyperglycemia; they interact with the specific receptors for AGEs (RAGEs) and make a meaningful contribution to cellular metabolism and/or alteration of their functions. Searches in PubMed using the keywords "advanced glycation end product "RAGE", "sRAGE", "DM", and "complications” were made to reveal some of the clinical outcomes of DM in cellular metabolism and organ function through the AGE-RAGE signaling pathway. All published experimental and clinical studies were included in tables. The AGE-RAGE signaling is involved in diabetic complications such as nephropathy, neuropathy, retinopathy, and osteopathy. Some clinical results in diabetic patients could be potentially attributed to AGE-RAGE signaling consequences. However, the AGE-RAGE signaling pathway has some helpful roles in many tissues, including an increase in osteogenic function. Soluble RAGE (sRAGE), as a ligand decoy, may increase in either condition of RAGE production or destruction, and then it cannot always reflect the AGE-RAGE signaling. Although various medicines are capable to target the AGE-RAGE axis. They can also limit the associated damaging consequences. Recombinant sRAGE can block the AGE-RAGE signaling pathway; however, it is associated with some limitations such as accessibility to AGEs, increase in other RAGE ligands, and a long half-life (24 hours). It is associated with losing the beneficial effect of AGE/RAGE. As a result, sRAGE is not a helpful marker to assess the activity of the RAGE signaling pathway. The recombinant sRAGE cannot be translated into clinical practice due to its limitations.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 275-LB
Author(s):  
EDWIN R. MIRANDA ◽  
JR. KELLY N. FULLER ◽  
RYAN PERKINS ◽  
PAUL J. BEISSWENGER ◽  
SARAH S. FARABI ◽  
...  

FEBS Letters ◽  
2009 ◽  
Vol 584 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Akiko Hirose ◽  
Takahisa Tanikawa ◽  
Hiroko Mori ◽  
Yosuke Okada ◽  
Yoshiya Tanaka

Author(s):  
Ahmed Abdel-Razik ◽  
Walaa Shabana ◽  
Ahmed Mohamed El Nakib ◽  
Mostafa Abdelsalam ◽  
Ahmed Abdelwahab ◽  
...  

Background and PurposeThe advanced glycation end products (AGEs) have been implicated in different diseases’ pathogenesis, but their role in hepatocellular carcinoma (HCC) is still a matter of debate. This study aims to investigate the association of AGEs with HCC development in patients with hepatitis C-related cirrhosis.MethodsOnly 153 of the 181 non-diabetic patients with cirrhosis were consecutively involved in this pilot cohort prospective study, along with 34 healthy control participants. Demographic characteristics, biochemical parameters, clinical data, and AGEs levels in all subjects at the starting point and every year after that for two years were assessed. Multivariable Cox regression analysis was used to settle variables that could predict HCC development within this period.ResultsHCC developed in 13 (8.5%) patients. Univariate Cox regression analysis reported that body mass index (P=0.013), homeostatic model assessment-insulin resistance (P=0.006), alpha-fetoprotein (P <0.001), and AGEs levels (P <0.001) were related to HCC development. After adjusting multiple confounders, the multivariable Cox regression model has revealed that AFP and AGEs were the powerful parameters related to the HCC occurrence (all P<0.05). AGEs at a cutoff value of more than 79.6 ng/ml had 100% sensitivity, 96.4% specificity, and 0.999 area under the curve (all P<0.001), using the receiver operating characteristic curve, for prediction of HCC development.ConclusionThis work suggests that AGEs are associated with an increased incidence of HCC, particularly in cirrhosis, which is encouraging in decreasing the risk of HCC in these patients.


2021 ◽  
Author(s):  
Rajkishor Nishad ◽  
Tahaseen V Syed ◽  
Manga Motrapu ◽  
Rajesh Kavvuri ◽  
Kiranmayi Kodali ◽  
...  

Abstract Background The prevalence of diabetes reaches epidemic proportions, affecting the incidence of diabetic nephropathy (DN) and associated end-stage kidney disease (ESKD). Diabetes is the leading cause of ESKD since 30–40% of diabetic patients develop DN. Albuminuria and eGFR have been considered a surrogate outcome of chronic kidney disease, and the search for a biomarker that predicts progression to diabetic kidney disease is intense.Methods We analyzed the association of serum advanced glycation end-products (AGEs) index (AGI) with impaired kidney function in uncontrolled diabetic patients (type II, n = 130) with albuminuria ranging from (150 to 450 mg/day). The kidney biopsy specimens were also examined for the association of AGEs, particularly carboxymethyl lysine (CML) with kidney function. Further, we also assessed the effect of carboxymethyl lysine on glomerular injury and podocytopathy in experimental animals.Results We observed a strong correlation between AGI and impaired kidney function in miroalbuminuric patients with hyperglycemia. A significant association between CML levels and impaired kidney function was noticed. Administration of CML in mice showed heavy proteinuria and glomerular abnormalities. Reduced podocyte number observed in mice administered with CML could be attributed to the epithelial-mesenchymal transition (EMT) of podocytes. Conclusion Serum AGEs could be independently related to the podocyte injury vis-a-vis the risk of DN progression to ESKD in patients with microalbuminuria. AGEs or CML could be considered a prognostic marker to assess microalbuminuria progression to ESKD in diabetic patients.


Sign in / Sign up

Export Citation Format

Share Document