scholarly journals Identification of Target Genes Involved in the Antiproliferative Effect of Glucocorticoids Reveals a Role for Nuclear Factor-κB Repression

2005 ◽  
Vol 19 (3) ◽  
pp. 632-643 ◽  
Author(s):  
Lars-Göran Bladh ◽  
Johan Lidén ◽  
Ahmad Pazirandeh ◽  
Ingalill Rafter ◽  
Karin Dahlman-Wright ◽  
...  

Abstract Glucocorticoid hormones (GCs) exert an antiproliferative effect on most cells. However, the molecular mechanism is still largely unclear. We investigated the antiproliferative mechanism by GCs in human embryonic kidney 293 cells with stably introduced glucocorticoid receptor (GR) mutants that discriminate between cross-talk with nuclear factor-κB (NF-κB) and activator protein-1 signaling, transactivation and transrepression, and antiproliferative vs. non-antiproliferative responses. Using the GR mutants, we here demonstrate a correlation between repression of NF-κB signaling and antiproliferative response. Gene expression profiling of endogenous genes in cells containing mutant GRs identified a limited number of genes that correlated with the antiproliferative response. This included a GC-mediated up-regulation of the NF-κB-inhibitory protein IκBα, in line with repression of NF-κB signaling being important in the GC-mediated antiproliferative response. Interestingly, the GC-stimulated expression of IκBα was a direct effect despite the inability of the GR mutant to transactivate through a GC-responsive element. Selective expression of IκBα in human embryonic kidney 293 cells resulted in a decreased percentage of cells in the S/G2/M phase and impaired cell proliferation. These results demonstrate that GC-mediated inhibition of NF-κB is an important mechanism in the antiproliferative response to GCs.

2019 ◽  
Vol 8 (12) ◽  
pp. 2091 ◽  
Author(s):  
Stuart B. Goodman ◽  
Jiri Gallo

Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone–implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.


2003 ◽  
Vol 23 (5) ◽  
pp. 589-598 ◽  
Author(s):  
Hyung Soo Han ◽  
Murat Karabiyikoglu ◽  
Stephen Kelly ◽  
Raymond A. Sobel ◽  
Midori A. Yenari

Nuclear factor-κB (NFκB) is a transcription factor that is activated after cerebral ischemia. NFκB activation leads to the expression of many inflammatory genes involved in the pathogenesis of stroke. The authors previously showed that mild hypothermia is protective even when cooling begins 2 h after stroke onset. In the present study, they examined the influence of hypothermia on NFκB activation. Rats underwent 2 h of transient middle cerebral artery occlusion. Brains were cooled to 33°C immediately after or 2 h after occlusion, and maintained for 2 h. After normothermic ischemia (brain temperature at 38°C), NFκB cytoplasmic expression, nuclear translocation, and binding activity were observed as early as 2 h in the ischemic hemisphere and persisted at 24 h. Hypothermia decreased NFκB translocation and binding activity but did not alter overall expression. Hypothermia also affected the levels of NFκB regulatory proteins by suppressing phosphorylation of NFκB's inhibitory protein (IκB-α) and IκB kinase (IKK-γ) and decreasing IKK activity, but did not alter overall IKK levels. Hypothermia suppressed the expression of two NFκB target genes: inducible nitric oxide synthase and TNF-α. These data suggest that the protective effect of hypothermia on cerebral injury is, in part, related to NFκB inhibition due to decreased activity of IKK.


Sign in / Sign up

Export Citation Format

Share Document