scholarly journals Coactivator Proteins as Determinants of Estrogen Receptor Structure and Function: Spectroscopic Evidence for a Novel Coactivator-Stabilized Receptor Conformation

2005 ◽  
Vol 19 (6) ◽  
pp. 1516-1528 ◽  
Author(s):  
Anobel Tamrazi ◽  
Kathryn E. Carlson ◽  
Alice L. Rodriguez ◽  
John A. Katzenellenbogen

Abstract The direct regulation of gene transcription by nuclear receptors, such as the estrogen receptor (ER), involves not just ligand and DNA binding but the recruitment of coregulators. Typically, recruitment of p160 coactivator proteins to agonist-liganded ER is considered to be unidirectional, with ligand binding stabilizing an ER ligand binding domain (LBD) conformation that favors coactivator interaction. Using fluorophore-labeled ERα-LBDs, we present evidence for a pronounced stabilization of ER conformation that results from coactivator binding, manifest by decreased ER sensitivity to proteases and reduced conformational dynamics, as well as for the formation of a novel coactivator-stabilized (costabilized) receptor conformation, that can be conveniently monitored by the generation of an excimer emission from pyrene-labeled ERα-LBDs. This costabilized conformation may embody features required to support ER transcriptional activity. Different classes of coactivator proteins combine with estrogen agonists of different structure to elicit varying degrees of this receptor stabilization, and antagonists and coactivator binding inhibitors disfavor the costabilized conformation. Remarkably, high concentrations of coactivators engender this conformation even in apo- and antagonist-bound ERs (more so with selective ER modulators than with pure antagonists), providing an in vitro model for the development of resistance to hormone therapy in breast cancer.

2007 ◽  
Vol 27 (2_suppl) ◽  
pp. 110-115 ◽  
Author(s):  
Susan Yung ◽  
Chan Tak Mao

♦ Background The introduction of peritoneal dialysis (PD) as a modality of renal replacement therapy has provoked much interest in the biology of the peritoneal mesothelial cell. Mesothelial cells isolated from omental tissue have immunohistochemical markers that are identical to those of mesothelial stem cells, and omental mesothelial cells can be cultivated in vitro to study changes to their biologic functions in the setting of PD. ♦ Method The present article describes the structure and function of mesothelial cells in the normal peritoneum and details the morphologic changes that occur after the introduction of PD. Furthermore, this article reviews the literature of mesothelial cell culture and the limitations of in vitro studies. ♦ Results The mesothelium is now considered to be a dynamic membrane that plays a pivotal role in the homeostasis of the peritoneal cavity, contributing to the control of fluid and solute transport, inflammation, and wound healing. These functional properties of the mesothelium are compromised in the setting of PD. Cultures of peritoneal mesothelial cells from omental tissue provide a relevant in vitro model that allows researchers to assess specific molecular pathways of disease in a distinct population of cells. Structural and functional attributes of mesothelial cells are discussed in relation to long-term culture, proliferation potential, age of tissue donor, use of human or animal in vitro models, and how the foregoing factors may influence in vitro data. ♦ Conclusions The ability to propagate mesothelial cells in culture has resulted, over the past two decades, in an explosion of mesothelial cell research pertaining to PD and peritoneal disorders. Independent researchers have highlighted the potential use of mesothelial cells as targets for gene therapy or transplantation in the search to provide therapeutic strategies for the preservation of the mesothelium during chemical or bacterial injury.


2020 ◽  
Vol 104 (23) ◽  
pp. 10233-10247
Author(s):  
Charlotte Deschamps ◽  
Elora Fournier ◽  
Ophélie Uriot ◽  
Frédérique Lajoie ◽  
Cécile Verdier ◽  
...  

1996 ◽  
Vol 40 (3) ◽  
pp. 701-705 ◽  
Author(s):  
S M Palmer ◽  
M J Rybak

We compared the pharmacodynamic activities of levofloxacin versus vancomycin, with or without rifampin, in an in vitro model with infected platelet-fibrin clots simulating vegetations. Infected platelet-fibrin clots were prepared with human cryoprecipitate, human platelets, calcium, thrombin, and approximately 10(9) CFU of organisms (MSSA 1199 and MRSA 494) per g and then were suspended via monofilament line into the in vitro model containing Mueller-Hinton growth medium. Antibiotics were administered by bolus injection into the model to simulate human pharmacokinetics; the regimens simulated included levofloxacin at dosages of 800 mg every 24 h (q24h) and 400 mg q12h, vancomycin at 1 g q12h, and rifampin at 600 mg q24h. Each model was run in duplicate over a 72-h period. Infected platelet-fibrin clots were removed in duplicate from each model, weighed, homogenized, serially diluted with sterile 0.9% saline, and plated on tryptic soy agar plates and plates containing antibiotics at 3, 6, and 12 times the MIC to evaluate the emergence of resistance. Time-kill curves were constructed by plotting the inoculum size versus time. Residual inoculum at 72 h was used to compare regimens. All levofloxacin regimens were significantly better than vancomycin monotherapy against both isolates (P < 0.002). Against MSSA 1199, levofloxacin q24h was significantly better than all other regimens, including levofloxacin q12h (P < 0.002); however, no difference between the levofloxacin monotherapy and combination therapy (with rifampin) regimens against MRSA 494 was seen. Killing activity for levofloxacin appeared to correlate better with the peak/MIC ratio than with the area under the curve/MIC ratio. The addition of rifampin significantly enhanced the activity of vancomycin but had little effect upon the activity of levofloxacin. For MRSA 494, vancomycin plus rifampin resulted in the greatest killing (P < 0.05). Development of resistance was not detected with any regimen. Levofloxacin may be a useful therapeutic alternative in the treatment of staphylococcal endocarditis, and further study with animal models of endocarditis or clinical trials are warranted.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
O Horvath ◽  
L Deres ◽  
K Ordog ◽  
K Bruszt ◽  
B Sumegi ◽  
...  

Abstract Introduction The deterioration of mitochondrial quality control greatly contributes to the hypertension induced cardiac remodeling and progression of heart failure. Our previous in vitro results demonstrated the mitochondrial protective effect of antioxidant BGP-15 compound in the presence of cellular stress. Purpose In our recent study we investigated the effect of BGP-15 on cardiac remodeling in spontaneously hypertensive rats (SHR) with manifested heart failure and on mitochondrial dynamics and function in cell culture model. Methods 15-month-old male SHR received 25 mg/kg/day BGP-15 (SHR-B) or placebo (SHR-C) for 18 weeks. Age matched Wistar rats (WKY) were used as normotensive control. The heart function was monitored by echocardiography. Histological preparations were made from cardiac tissue. Neonatal rat cardiomyocytes (NRCMs) were used as in vitro model. 150 μM H2O2 stress and 50 μM BGP-15 treatment was applied. Mitochondrial network was stained with MitoTracker Red. Mitochondrial membrane potential was detected using JC-1 dye, while mitochondrial function was monitored by the Agilent Seahorse XFp, Cell Mito Stress Test. In both model the cellular levels of mitochondrial dynamics proteins were measured in Western blot. To study the ultrastructure we used electron microscopy in our in vivo and in vitro model. Results Left ventricular (LV) mass and LV wall thickness were increased significantly in SHR-C group compared to the initial values (p<0.05). These parameters were decreased considerably in the SHR-B group. Ejection fraction (EF%) decreased in both SHR group although this downturn was minimal because of the treatment. Chronic high blood pressure caused higher collagen deposition in SHR-C rats that was significantly diminished in the SHR-B group. Regarding the mitochondrial function decrease in the levels of fusion proteins OPA1 and MFN2 was observed in the SHR-C group. These differences were significantly reduced by BGP-15 treatment (p<0.05). Mitigation of the level of fission protein DRP1 was however reduced by BGP-15 (p<0.05). In our cellular model, we observed that the H2O2-induced mitochondrial fragmentation was decreased by BGP-15 treatment (p<0.05). BGP-15 treatment prevented mitochondrial membrane potential fall in H2O2 stress (p<0.05). There was no significant difference in basal respiration among groups by monitoring the mitochondrial function. The maximal respiration capacity and ATP production were significantly higher in the BGP-15 treated group in comparison to the stressed group (p<0.05). Conclusion BGP-15 treatment has beneficial effects on mitochondrial dynamics and structure by promoting fusion processes. It also supports the maintenance of mitochondrial function through the preservation of the mitochondrial structure. The mitigation of remodeling processes and the preserved EF in the treated group are results at least partly of the comprehensible effects of BGP-15 on mitochondrial structure and function. Acknowledgement/Funding GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025


Dysphagia ◽  
2019 ◽  
Vol 35 (4) ◽  
pp. 685-695 ◽  
Author(s):  
Simmi Patel ◽  
William J. McAuley ◽  
Michael T. Cook ◽  
Yi Sun ◽  
Shaheen Hamdy ◽  
...  

Abstract Drinks and foods may be thickened to improve swallowing safety for dysphagia patients, but the resultant consistencies are not always palatable. Characterising alternative appetising foods is an important task. The study aims to characterise the in vitro swallowing behaviour of specifically formulated thickened dysphagia fluids containing xanthan gum and/or starch with standard jellies and yoghurt using a validated mechanical model, the “Cambridge Throat”. Observing from the side, the model throat can follow an experimental oral transit time (in vitro-OTT) and a bolus length (BL) at the juncture of the pharynx and larynx, to assess the velocity and cohesion of bolus flow. Our results showed that higher thickener concentration produced longer in vitro-OTT and shorter BL. At high concentration (spoon-thick), fluids thickened with starch-based thickener showed significantly longer in vitro-OTT than when xanthan gum-based thickener was used (84.5 s ± 34.5 s and 5.5 s ± 1.6 s, respectively, p < 0.05). In contrast, at low concentration (nectar-like), fluids containing xanthan gum-based thickener demonstrated shorter BL than those of starch-based thickener (6.4 mm ± 0.5 mm and 8.2 mm ± 0.8 mm, respectively, p < 0.05). The jellies and yoghurt had comparable in vitro-OTT and BL to thickeners at high concentrations (honey-like and spoon-thick), indicating similar swallowing characteristics. The in vitro results showed correlation with published in vivo data though the limitations of applying the in vitro swallowing test for dysphagia studies were noted. These findings contribute useful information for designing new thickening agents and selecting alternative and palatable safe-to-swallow foods.


2019 ◽  
Author(s):  
Feng-Jie Wu ◽  
Lisa M. Williams ◽  
Alaa Abdul-Ridha ◽  
Avanka Gunatilaka ◽  
Tasneem M. Vaid ◽  
...  

AbstractG-Protein Coupled Receptors (GPCRs) transmit signals across the cell membrane via an allosteric network from the ligand-binding site to the G-protein binding site via a series of conserved microswitches. Crystal structures of GPCRs provide snapshots of inactive and active states, but poorly describe the conformational dynamics of the allosteric network that underlies GPCR activation. Here we analyse the correlation between ligand binding and receptor conformation of the α1A-adrenoceptor, known for stimulating smooth muscle contraction in response to binding noradrenaline. NMR of 13CεH3-methionine labelled α1A-adrenoreceptor mutants, each exhibiting differing signalling capacities, revealed how different classes of ligands modulate receptor conformational equilibria. 13CεH3-methionine residues near the microswitches revealed distinct states that correlated with ligand efficacies, supporting a conformational selection mechanism. We propose that allosteric coupling between the microswitches controls receptor conformation and underlies the mechanism of ligand modulation of GPCR signalling in cells.


2020 ◽  
Vol 295 (21) ◽  
pp. 7404-7417 ◽  
Author(s):  
Feng-Jie Wu ◽  
Lisa M. Williams ◽  
Alaa Abdul-Ridha ◽  
Avanka Gunatilaka ◽  
Tasneem M. Vaid ◽  
...  

G protein–coupled receptors (GPCRs) use a series of conserved microswitches to transmit signals across the cell membrane via an allosteric network encompassing the ligand-binding site and the G protein-binding site. Crystal structures of GPCRs provide snapshots of their inactive and active states, but poorly describe the conformational dynamics of the allosteric network that underlies GPCR activation. Here, we analyzed the correlation between ligand binding and receptor conformation of the α1A-adrenoreceptor, a GPCR that stimulates smooth muscle contraction in response to binding noradrenaline. NMR of [13CϵH3]methionine-labeled α1A-adrenoreceptor variants, each exhibiting differing signaling capacities, revealed how different classes of ligands modulate the conformational equilibria of this receptor. [13CϵH3]Methionine residues near the microswitches exhibited distinct states that correlated with ligand efficacies, supporting a conformational selection mechanism. We propose that allosteric coupling among the microswitches controls the conformation of the α1A-adrenoreceptor and underlies the mechanism of ligand modulation of GPCR signaling in cells.


Sign in / Sign up

Export Citation Format

Share Document