Comparative methods for fecal sample storage to preserve gut microbial structure and function in an in vitro model of the human colon

2020 ◽  
Vol 104 (23) ◽  
pp. 10233-10247
Author(s):  
Charlotte Deschamps ◽  
Elora Fournier ◽  
Ophélie Uriot ◽  
Frédérique Lajoie ◽  
Cécile Verdier ◽  
...  
2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
O Horvath ◽  
L Deres ◽  
K Ordog ◽  
K Bruszt ◽  
B Sumegi ◽  
...  

Abstract Introduction The deterioration of mitochondrial quality control greatly contributes to the hypertension induced cardiac remodeling and progression of heart failure. Our previous in vitro results demonstrated the mitochondrial protective effect of antioxidant BGP-15 compound in the presence of cellular stress. Purpose In our recent study we investigated the effect of BGP-15 on cardiac remodeling in spontaneously hypertensive rats (SHR) with manifested heart failure and on mitochondrial dynamics and function in cell culture model. Methods 15-month-old male SHR received 25 mg/kg/day BGP-15 (SHR-B) or placebo (SHR-C) for 18 weeks. Age matched Wistar rats (WKY) were used as normotensive control. The heart function was monitored by echocardiography. Histological preparations were made from cardiac tissue. Neonatal rat cardiomyocytes (NRCMs) were used as in vitro model. 150 μM H2O2 stress and 50 μM BGP-15 treatment was applied. Mitochondrial network was stained with MitoTracker Red. Mitochondrial membrane potential was detected using JC-1 dye, while mitochondrial function was monitored by the Agilent Seahorse XFp, Cell Mito Stress Test. In both model the cellular levels of mitochondrial dynamics proteins were measured in Western blot. To study the ultrastructure we used electron microscopy in our in vivo and in vitro model. Results Left ventricular (LV) mass and LV wall thickness were increased significantly in SHR-C group compared to the initial values (p<0.05). These parameters were decreased considerably in the SHR-B group. Ejection fraction (EF%) decreased in both SHR group although this downturn was minimal because of the treatment. Chronic high blood pressure caused higher collagen deposition in SHR-C rats that was significantly diminished in the SHR-B group. Regarding the mitochondrial function decrease in the levels of fusion proteins OPA1 and MFN2 was observed in the SHR-C group. These differences were significantly reduced by BGP-15 treatment (p<0.05). Mitigation of the level of fission protein DRP1 was however reduced by BGP-15 (p<0.05). In our cellular model, we observed that the H2O2-induced mitochondrial fragmentation was decreased by BGP-15 treatment (p<0.05). BGP-15 treatment prevented mitochondrial membrane potential fall in H2O2 stress (p<0.05). There was no significant difference in basal respiration among groups by monitoring the mitochondrial function. The maximal respiration capacity and ATP production were significantly higher in the BGP-15 treated group in comparison to the stressed group (p<0.05). Conclusion BGP-15 treatment has beneficial effects on mitochondrial dynamics and structure by promoting fusion processes. It also supports the maintenance of mitochondrial function through the preservation of the mitochondrial structure. The mitigation of remodeling processes and the preserved EF in the treated group are results at least partly of the comprehensible effects of BGP-15 on mitochondrial structure and function. Acknowledgement/Funding GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025


2012 ◽  
Vol 3 (3) ◽  
pp. 229-236 ◽  
Author(s):  
M. Hatanaka ◽  
Y. Nakamura ◽  
A.J.H. Maathuis ◽  
K. Venema ◽  
I. Murota ◽  
...  

Survival and germination rate of Bacillus subtilis C-3102 spores were investigated in a stomach and small intestine model (TIM-1), while the impact of C-3102 cells that had passed through TIM-1 on human colon microbiota was evaluated in a model of the large intestine (TIM-2). The survival of C-3102 spores in TIM-1 was 99%; 8% of the spores had germinated. Effluent of TIM-1 was subsequently introduced into TIM-2 and a micro-array platform was employed to assess changes in the microbiota composition. The effluent, which contained germinated C-3102 cells, increased some Bifidobacterium species and decreased some Clostridium groups. These changes were greater compared to those obtained by adding C-3102 spores directly to TIM-2. The present study suggests that oral doses of B. subtilis C-3102 spores have the potential to modulate the human colon microbiota. This effect may be caused by germination of the spores in the gastrointestinal tract.


1989 ◽  
Vol 26 (3) ◽  
pp. 280-280
Author(s):  
C M Evans ◽  
A D Phillips ◽  
J A Walker-Smith ◽  
T T Macdonald

2016 ◽  
Vol 6 ◽  
Author(s):  
Guus A. M. Kortman ◽  
Bas E. Dutilh ◽  
Annet J. H. Maathuis ◽  
Udo F. Engelke ◽  
Jos Boekhorst ◽  
...  

Author(s):  
Rais Reskiawan A. Kadir ◽  
Mansour Alwjwaj ◽  
Zoe McCarthy ◽  
Ulvi Bayraktutan

AbstractTo investigate whether therapeutic hypothermia augments the restorative impact of protein kinase C-β (PKC-β) and Nox2 inhibition on an in vitro model of human blood–brain barrier (BBB). Cells cultured in normoglycaemic (5.5 mM) or hyperglycaemic (25 mM, 6 to 120 h) conditions were treated with therapeutic hypothermia (35 °C) in the absence or presence of a PKC-β inhibitor (LY333531, 0.05 μM) or a Nox2 inhibitor (gp91ds-tat, 50 μM). BBB was established by co-culture of human brain microvascular endothelial cells (HBMECs) with astrocytes (HAs) and pericytes. BBB integrity and function were assessed via transendothelial electrical resistance (TEER) and paracellular flux of sodium fluorescein (NaF, 376 Da). Nox activity (lucigenin assay), superoxide anion production (cytochrome-C reduction assay), cellular proliferative capacity (wound scratch assay) and actin cytoskeletal formation (rhodamine-phalloidin staining) were assessed both in HBMECs and HAs using the specific methodologies indicated in brackets. Therapeutic hypothermia augmented the protective effects of PKC-β or Nox2 inhibition on BBB integrity and function in experimental setting of hyperglycaemia, as evidenced by increases in TEER and concomitant decreases in paracellular flux of NaF. The combinatory approaches were more effective in repairing physical damage exerted on HBMEC and HA monolayers by wound scratch and in decreasing Nox activity and superoxide anion production compared to sole treatment regimen with either agent. Similarly, the combinatory approaches were more effective in suppressing actin stress fibre formation and maintaining normal cytoskeletal structure. Therapeutic hypothermia augments the cerebral barrier-restorative capacity of agents specifically targeting PKC-β or Nox2 pathways.


Sign in / Sign up

Export Citation Format

Share Document