scholarly journals A Free Carboxylate Oxygen in the Side Chain of Position 674 in Transmembrane Domain 7 Is Necessary for TSH Receptor Activation

2001 ◽  
Vol 15 (8) ◽  
pp. 1294-1305 ◽  
Author(s):  
Susanne Neumann ◽  
G. Krause ◽  
S. Chey ◽  
Ralf Paschke
2005 ◽  
Vol 152 (4) ◽  
pp. 625-634 ◽  
Author(s):  
Susanne Neumann ◽  
Maren Claus ◽  
Ralf Paschke

Objective: The molecular mechanisms of TSH receptor (TSHR) activation and intramolecular signal transduction are largely unknown. Deletion of the extracellular domain (ECD) of the TSHR results in increased constitutive activity, which suggests a self-inhibitory interaction between the ECD and the extracellular loops (ECLs) or the transmembrane domains (TMDs). To investigate these potential interactions and to pursue the idea that mutations in the ECD affect the constitutive activity of mutants in the ECLs or TMDs we generated double mutants between position 281 in the ECD and mutants in all three ECLs as well as the 6th TMD. Design: We combined mutation S281D, characterized by an impaired TSH-stimulated cAMP response, with the constitutively activating in vivo mutations I486F (1st ECL), I568T (2nd ECL), V656F (3rd ECL) and D633F (6th TMD). Further, we constructed double mutants containing the constitutively activating mutation S281N and one of the inactivating mutations D474E, T477I (1st ECL) and D633K (6th TMD). Results: The cAMP level of the double mutants with S281N and the inactive mutants in the 1st ECL was decreased below the level of the inactive single mutants, demonstrating that a constitutively activating mutation in the ECD cannot bypass disruption of signal transduction in the serpentine domain. In double mutants with S281D, basal and TSH-induced cAMP and inositol phosphate production of constitutively active mutants was reduced to the level of S281D. Conclusion: The dominance of S281D and the dependence of constitutively activating mutations in the ECLs on the functionally intact ECD strongly suggest that interactions between these receptor domains are required for TSHR activation and intramolecular signal transduction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruixue Xia ◽  
Na Wang ◽  
Zhenmei Xu ◽  
Yang Lu ◽  
Jing Song ◽  
...  

AbstractHistamine receptors play important roles in various pathophysiological conditions and are effective targets for anti-allergy treatment, however the mechanism of receptor activation remain elusive. Here, we present the cryo-electron microscopy (cryo-EM) structure of the human H1R in complex with a Gq protein in an active conformation via a NanoBiT tethering strategy. The structure reveals that histamine activates receptor via interacting with the key residues of both transmembrane domain 3 (TM3) and TM6 to squash the binding pocket on the extracellular side and to open the cavity on the intracellular side for Gq engagement in a model of “squash to activate and expand to deactivate”. The structure also reveals features for Gq coupling, including the interaction between intracellular loop 2 (ICL2) and the αN-β junction of Gq/11 protein. The detailed analysis of our structure will provide a framework for understanding G-protein coupling selectivity and clues for designing novel antihistamines.


2007 ◽  
Vol 130 (6) ◽  
pp. 559-568 ◽  
Author(s):  
Prasad Purohit ◽  
Anthony Auerbach

Charged residues in the β10–M1 linker region (“pre-M1”) are important in the expression and function of neuromuscular acetylcholine receptors (AChRs). The perturbation of a salt bridge between pre-M1 residue R209 and loop 2 residue E45 has been proposed as being a principle event in the AChR gating conformational “wave.” We examined the effects of mutations to all five residues in pre-M1 (positions M207–P211) plus E45 in loop 2 in the mouse α1-subunit. M207, Q208, and P211 mutants caused small (approximately threefold) changes in the gating equilibrium constant (Keq), but the changes for R209, L210, and E45 were larger. Of 19 different side chain substitutions at R209 on the wild-type background, only Q, K, and H generated functional channels, with the largest change in Keq (67-fold) from R209Q. Various R209 mutants were functional on different E45 backgrounds: H, Q, and K (E45A), H, A, N, and Q (E45R), and K, A, and N (E45L). Φ values for R209 (on the E45A background), L210, and E45 were 0.74, 0.35, and 0.80, respectively. Φ values for R209 on the wt and three other backgrounds could not be estimated because of scatter. The average coupling energy between 209/45 side chains (six different pairs) was only −0.33 kcal/mol (for both α subunits, combined). Pre-M1 residues are important for expression of functional channels and participate in gating, but the relatively modest changes in closed- vs. open-state energy caused mutations, the weak coupling energy between these residues and the functional activity of several unmatched-charge pairs are not consistent with the perturbation of a salt bridge between R209 and E45 playing the principle role in gating.


2011 ◽  
Vol 25 (10) ◽  
pp. 1804-1818 ◽  
Author(s):  
K. Coopman ◽  
R. Wallis ◽  
G. Robb ◽  
A. J. H. Brown ◽  
G. F. Wilkinson ◽  
...  

The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.


2015 ◽  
Vol 29 (2) ◽  
pp. 307-321 ◽  
Author(s):  
Percy H. Carter ◽  
Thomas Dean ◽  
Brijesh Bhayana ◽  
Ashok Khatri ◽  
Raj Rajur ◽  
...  

Abstract The parathyroid hormone receptor-1 (PTHR1) plays critical roles in regulating blood calcium levels and bone metabolism and is thus of interest for small-molecule ligand development. Of the few small-molecule ligands reported for the PTHR1, most are of low affinity, and none has a well-defined mechanism of action. Here, we show that SW106 and AH-3960, compounds previously identified to act as an antagonist and agonist, respectively, on the PTHR1, each bind to PTHR1-delNT, a PTHR1 construct that lacks the large amino-terminal extracellular domain used for binding endogenous PTH peptide ligands, with the same micromolar affinity with which it binds to the intact PTHR1. SW106 antagonized PTHR1-mediated cAMP signaling induced by the peptide analog, M-PTH(1–11), as well as by the native PTH(1–9) sequence, as tethered to the extracellular end of transmembrane domain (TMD) helix-1 of the receptor. SW106, however, did not function as an inverse agonist on either PTHR1-H223R or PTHR1-T410P, which have activating mutations at the cytoplasmic ends of TMD helices 2 and 6, respectively. The overall data indicate that SW106 and AH-3960 each bind to the PTHR1 TMD region and likely to within an extracellularly exposed area that is occupied by the N-terminal residues of PTH peptides. Additionally, they suggest that the inhibitory effects of SW106 are limited to the extracellular portions of the TMD region that mediate interactions with agonist ligands but do not extend to receptor-activation determinants situated more deeply in the helical bundle. The study helps to elucidate potential mechanisms of small-molecule binding at the PTHR1.


Endocrinology ◽  
2021 ◽  
Author(s):  
Mihaly Mezei ◽  
Rauf Latif ◽  
Bhaskar Das ◽  
Terry F Davies

Abstract The TSH receptor is a GPCR Group A family member with seven transmembrane helices. We generated three new models of its entire transmembrane region using a 600 ns molecular simulation. The simulation started from our previously published model which we have now revised by also modeling the intracellular loops and the C-terminal tail, adding internal waters and embedding it into a lipid bilayer with a water layer and with ions added to complete the system. We have named this model TSHR-TMD – TRIO since three representative dominant structures were then extracted from the simulation trajectory and compared with the original model. These structures each showed small but significant changes in the relative positions of the helices. The three models were also used as targets to dock a set of small molecules that are known active compounds including a new TSHR antagonist (BT362), which confirmed the appropriateness of the model with some small molecules showing significant preference for one or other of the structures.


Sign in / Sign up

Export Citation Format

Share Document