Novel Late-Onset Alzheimer's Disease Loci Variants Associate with Brain Gene Expression (S54.001)

Neurology ◽  
2012 ◽  
Vol 78 (Meeting Abstracts 1) ◽  
pp. S54.001-S54.001
Author(s):  
M. Allen ◽  
F. Zou ◽  
H. S. Chai ◽  
C. Younkin ◽  
J. Crook ◽  
...  
2012 ◽  
Vol 8 (4S_Part_12) ◽  
pp. P451-P451 ◽  
Author(s):  
Mariet Allen ◽  
Fanggeng Zou ◽  
High Seng Chai ◽  
Curtis Younkin ◽  
Julia Crook ◽  
...  

2014 ◽  
Vol 35 (9) ◽  
pp. 1961-1972 ◽  
Author(s):  
Nicole C. Berchtold ◽  
Marwan N. Sabbagh ◽  
Thomas G. Beach ◽  
Ronald C. Kim ◽  
David H. Cribbs ◽  
...  

2014 ◽  
Vol 6 (4) ◽  
pp. 39 ◽  
Author(s):  
Mariet Allen ◽  
Michaela Kachadoorian ◽  
Zachary Quicksall ◽  
Fanggeng Zou ◽  
High Chai ◽  
...  

2018 ◽  
Author(s):  
Stephen A. Semick ◽  
Rahul A. Bharadwaj ◽  
Leonardo Collado-Torres ◽  
Ran Tao ◽  
Joo Heon Shin ◽  
...  

AbstractBackgroundLate-onset Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD represented as variation in DNA methylation (DNAm), we surveyed 420,852 DNAm sites from neurotypical controls (N=49) and late-onset AD patients (N=24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum).ResultsWe identified 858 sites with robust differential methylation, collectively annotated to 772 possible genes (FDR<5%, within 10kb). These sites were overrepresented in AD genetic risk loci (p=0.00655), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR<5%). We analyzed corresponding RNA-seq data to prioritize 130 genes within 10kb of the differentially methylated sites, which were differentially expressed and had expression levels associated with nearby DNAm levels (p<0.05). This validated gene set includes previously reported (e.g. ANK1, DUSP22) and novel genes involved in Alzheimer’s disease, such as ANKRD30B.ConclusionsThese results highlight DNAm changes in Alzheimer’s disease that have gene expression correlates, implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


1991 ◽  
Vol 21 (4) ◽  
pp. 855-866 ◽  
Author(s):  
Paul J. Harrison ◽  
Amanda J. L. Barton ◽  
Abdolrahman Najlerahim ◽  
Brendan McDonald ◽  
R. Carl A. Pearson

SYNOPSISMessenger RNA (mRNA) is the key intermediate in the gene expression pathway. The amount of mRNA in Alzheimer's disease (AD) brains has been determined using in situ hybridization histochemistry (ISHH) to detect the poly(A) tails of polyadenylated mRNA (poly(A) + mRNA). On a regional basis, AD cases had significantly less poly(A) + mRNA than controls in hippocampus (field CA3) and cerebellum (granule cell layer). Analysis of constituent pyramidal neurons showed mean reductions per cell within AD hippocampus (field CA3) and temporal cortex, but not in visual cortex. Similar changes were seen in a small group of non-AD dementias. The finding of reduced poly(A) + mRNA content is another indication of the altered brain gene expression occurring in AD. It is proposed that measurement of poly(A) + mRNA may be valuable in identifying functionally impaired neuronal populations. The methodology also provides a means by which changes in the quantitative distribution of individual mRNAs can be determined relative to that of poly(A) + mRNA as a whole.


2019 ◽  
Vol 15 ◽  
pp. P1260-P1260
Author(s):  
Carl Grant Mangleburg ◽  
Ying-Wooi Wan ◽  
Rami Al-Ouran ◽  
Tom V. Lee ◽  
Katherine S. Allison ◽  
...  

Neurology ◽  
2012 ◽  
Vol 79 (3) ◽  
pp. 221-228 ◽  
Author(s):  
M. Allen ◽  
F. Zou ◽  
H. S. Chai ◽  
C. S. Younkin ◽  
J. Crook ◽  
...  

1993 ◽  
Vol 679 (1 Markers of Ne) ◽  
pp. 178-187 ◽  
Author(s):  
JOHN R. DUGUID ◽  
CHRISTOPHER TRZEPACZ ◽  
THOMAS KEMPER ◽  
WALLACE W. TOURTELLOTE ◽  
LADISLAV VOLICER

2020 ◽  
Vol 11 (2) ◽  
pp. 8686-8701

The currently utilized neuroimaging and cerebrospinal fluid-based detection of Alzheimer’s disease (AD) suffer several limitations, including sensitivity, specificity, and cost. Therefore, the identification of AD by analyzing blood gene expression may ameliorate the early diagnosis of the AD. We aimed to identify common genes commonly deregulated in blood and brain in AD. Comprehensive analysis of blood and brain gene expression datasets of AD, eQTL, and epigenetics data was analyzed by the integrative bioinformatics approach. The integrative analysis showed nine differentially expressed genes common to blood cells and brain (CNBD1, SUCLG2-AS1, CCDC65, PDE4D, MTMR1, C3, SLC6A15, LINC01806, and FRG1JP). Analysis of SNP and cis-eQTL data showed 18 genes; namely, HSD17B1, GAS5, RPS5, VKORC1, GLE1, WDR1, RPL12, MORN1, RAD52, SDR39U1, NPHP4, MT1E, SORD, LINC00638, MCM3AP-AS1, GSDMD, RPS9, and GNL2 were observed deregulated AD blood and brain tissues. Functional gene set enrichment analysis demonstrated a significant association of these genes in neurodegeneration-associated molecular pathways. Integrative biomolecular networks revealed dysregulation of several hub transcription factors and microRNAs in AD. Moreover, hub genes were observed associated with significant histone modification. This study detected common molecular biomarkers and pathways in blood and brain tissues in AD that may be potential biomarkers and therapeutic targets in AD.


Sign in / Sign up

Export Citation Format

Share Document