scholarly journals Busemann functions and Gibbs measures in directed polymer models on $\mathbb{Z}^{2}$

2020 ◽  
Vol 48 (2) ◽  
pp. 778-816 ◽  
Author(s):  
Christopher Janjigian ◽  
Firas Rassoul-Agha
2017 ◽  
Vol 60 (2) ◽  
pp. 411-421
Author(s):  
Luchezar Stoyanov

AbstractWe prove a comprehensive version of the Ruelle–Perron–Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Hölder constant of the function generating the operator appears only polynomially, not exponentially as in previously known estimates.


2008 ◽  
Vol 20 (05) ◽  
pp. 529-595 ◽  
Author(s):  
ALINA KARGOL ◽  
YURI KONDRATIEV ◽  
YURI KOZITSKY

A unified theory of phase transitions and quantum effects in quantum anharmonic crystals is presented. In its framework, the relationship between these two phenomena is analyzed. The theory is based on the representation of the model Gibbs states in terms of path measures (Euclidean Gibbs measures). It covers the case of crystals without translation invariance, as well as the case of asymmetric anharmonic potentials. The results obtained are compared with those known in the literature.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1512
Author(s):  
Baris Demir ◽  
Gabriel Perli ◽  
Kit-ying Chan ◽  
Jannick Duchet-Rumeau ◽  
Sébastien Livi

Recently, a new generation of polymerised ionic liquids with high thermal stability and good mechanical performances has been designed through novel and versatile cycloaliphatic epoxy-functionalised ionic liquids (CEILs). From these first promising results and unexplored chemical structures in terms of final properties of the PILs, a computational approach based on molecular dynamics simulations has been developed to generate polymer models and predict the thermo–mechanical properties (e.g., glass transition temperature and Young’s modulus) of experimentally investigated CEILs for producing multi-functional polymer materials. Here, a completely reproducible and reliable computational protocol is provided to design, test and tune poly(ionic liquids) based on epoxidised ionic liquid monomers for future multi-functional thermoset polymers.


Author(s):  
Guomin Zhu ◽  
Wen-Long Li ◽  
Xiaojun Cui

2010 ◽  
Vol 22 (10) ◽  
pp. 1147-1179 ◽  
Author(s):  
LUIS BARREIRA

This is a survey on recent developments concerning a thermodynamic formalism for almost additive sequences of functions. While the nonadditive thermodynamic formalism applies to much more general sequences, at the present stage of the theory there are no general results concerning, for example, a variational principle for the topological pressure or the existence of equilibrium or Gibbs measures (at least without further restrictive assumptions). On the other hand, in the case of almost additive sequences, it is possible to establish a variational principle and to discuss the existence and uniqueness of equilibrium and Gibbs measures, among several other results. After presenting in a self-contained manner the foundations of the theory, the survey includes the description of three applications of the almost additive thermodynamic formalism: a multifractal analysis of Lyapunov exponents for a class of nonconformal repellers; a conditional variational principle for limits of almost additive sequences; and the study of dimension spectra that consider simultaneously limits into the future and into the past.


Sign in / Sign up

Export Citation Format

Share Document