MAGNETIC RESONANCE IMAGING-GUIDED FOCUSED ULTRASOUND FOR THERMAL ABLATION IN THE BRAIN

Neurosurgery ◽  
2007 ◽  
Vol 60 (4) ◽  
pp. 593-600 ◽  
Author(s):  
Zvi R. Cohen ◽  
Jacob Zaubermann ◽  
Sagi Harnof ◽  
Yael Mardor ◽  
Dvora Nass ◽  
...  
Neurosurgery ◽  
2010 ◽  
Vol 66 (2) ◽  
pp. 323-332 ◽  
Author(s):  
Nathan McDannold ◽  
Greg T. Clement ◽  
Peter Black ◽  
Ferenc Jolesz ◽  
Kullervo Hynynen

Abstract OBJECTIVE This work evaluated the clinical feasibility of transcranial magnetic resonance imaging–guided focused ultrasound surgery. METHODS Transcranial magnetic resonance imaging–guided focused ultrasound surgery offers a potential noninvasive alternative to surgical resection. The method combines a hemispherical phased-array transducer and patient-specific treatment planning based on acoustic models with feedback control based on magnetic resonance temperature imaging to overcome the effects of the cranium and allow for controlled and precise thermal ablation in the brain. In initial trials in 3 glioblastoma patients, multiple focused ultrasound exposures were applied up to the maximum acoustic power available. Offline analysis of the magnetic resonance temperature images evaluated the temperature changes at the focus and brain surface. RESULTS We found that it was possible to focus an ultrasound beam transcranially into the brain and to visualize the heating with magnetic resonance temperature imaging. Although we were limited by the device power available at the time and thus seemed to not achieve thermal coagulation, extrapolation of the temperature measurements at the focus and on the brain surface suggests that thermal ablation will be possible with this device without overheating the brain surface, with some possible limitation on the treatment envelope. CONCLUSION Although significant hurdles remain, these findings are a major step forward in producing a completely noninvasive alternative to surgical resection for brain disorders.


2004 ◽  
Vol 127 (5) ◽  
pp. S242-S247 ◽  
Author(s):  
Ferenc A. Jolesz ◽  
Kullervo Hynynen ◽  
Nathan McDannold ◽  
David Freundlich ◽  
Doron Kopelman

2012 ◽  
Vol 23 (11) ◽  
pp. 1144-1155 ◽  
Author(s):  
Emmanuel Thévenot ◽  
Jessica F. Jordão ◽  
Meaghan A. O'Reilly ◽  
Kelly Markham ◽  
Ying-Qi Weng ◽  
...  

2018 ◽  
Vol 7 (3) ◽  
pp. 217-221
Author(s):  
E. V. Shevchenko ◽  
G. R. Ramazanov ◽  
S. S. Petrikov

Background Acute dizziness may be the only symptom of stroke. Prevalence of this disease among patients with isolated dizziness differs significantly and depends on study design, inclusion criteria and diagnostic methods. In available investigations, we did not find any prospective studies where magnetic resonance imaging, positional maneuvers, and Halmagyi-Curthoys test had been used to clarify a pattern of diseases with isolated acute dizziness and suspected stroke.Aim of study To clarify the pattern of the causes of dizziness in patients with suspected acute stroke.Material and methods We examined 160 patients admitted to N.V. Sklifosovsky Research Institute for Emergency Medicine with suspected stroke and single or underlying complaint of dizziness. All patients were examined with assessment of neurological status, Dix-Hollpike and Pagnini-McClure maneuvers, HalmagyiCurthoys test, triplex scans of brachiocephalic arteries, transthoracic echocardiography, computed tomography (CT) and magnetic resonance imaging (MRI) of the brain with magnetic field strength 1.5 T. MRI of the brain was performed in patients without evidence of stroke by CT and in patients with stroke of undetermined etiology according to the TOAST classification.Results In 16 patients (10%), the cause of dizziness was a disease of the brain: ischemic stroke (n=14 (88%)), hemorrhage (n=1 (6%)), transient ischemic attack (TIA) of posterior circulation (n=1 (6%)). In 70.6% patients (n=113), the dizziness was associated with peripheral vestibulopathy: benign paroxysmal positional vertigo (n=85 (75%)), vestibular neuritis (n=19 (17%)), Meniere’s disease (n=7 (6%)), labyrinthitis (n=2 (1,3%)). In 6.9% patients (n=11), the cause of dizziness was hypertensive encephalopathy, 1.9% of patients (n=3) had heart rhythm disturbance, 9.4% of patients (n=15) had psychogenic dizziness, 0.6% of patients (n=1) had demyelinating disease, and 0.6% of patients (n=1) had hemic hypoxia associated with iron deficiency anemia.Conclusion In 70.6% patients with acute dizziness, admitted to hospital with a suspected stroke, peripheral vestibulopathy was revealed. Only 10% of patients had a stroke as a cause of dizziness.


2020 ◽  
pp. 1-9 ◽  
Author(s):  
Benjamin Davidson ◽  
Karim Mithani ◽  
Yuexi Huang ◽  
Ryan M. Jones ◽  
Maged Goubran ◽  
...  

OBJECTIVEMagnetic resonance imaging–guided focused ultrasound (MRgFUS) is an emerging treatment modality that enables incisionless ablative neurosurgical procedures. Bilateral MRgFUS capsulotomy has recently been demonstrated to be safe and effective in treating obsessive-compulsive disorder (OCD) and major depressive disorder (MDD). Preliminary evidence has suggested that bilateral MRgFUS capsulotomy can present increased difficulties in reaching lesional temperatures as compared to unilateral thalamotomy. The authors of this article aimed to study the parameters associated with successful MRgFUS capsulotomy lesioning and to present longitudinal radiographic findings following MRgFUS capsulotomy.METHODSUsing data from 22 attempted MRgFUS capsulotomy treatments, the authors investigated the relationship between various sonication parameters and the maximal temperature achieved at the intracranial target. Lesion volume and morphology were analyzed longitudinally using structural and diffusion tensor imaging. A retreatment procedure was attempted in one patient, and their postoperative imaging is presented.RESULTSSkull density ratio (SDR), skull thickness, and angle of incidence were significantly correlated with the maximal temperature achieved. MRgFUS capsulotomy lesions appeared similar to those following MRgFUS thalamotomy, with three concentric zones observed on MRI. Lesion volumes regressed substantially over time following MRgFUS. Fractional anisotropy analysis revealed a disruption in white matter integrity, followed by a gradual return to near-baseline levels concurrent with lesion regression. In the patient who underwent retreatment, successful bilateral lesioning was achieved, and there were no adverse clinical or radiographic events.CONCLUSIONSWith the current iteration of MRgFUS technology, skull-related parameters such as SDR, skull thickness, and angle of incidence should be considered when selecting patients suitable for MRgFUS capsulotomy. Lesions appear to follow morphological patterns similar to what is seen following MRgFUS thalamotomy. Retreatment appears to be safe, although additional cases will be necessary to further evaluate the associated safety profile.


Sign in / Sign up

Export Citation Format

Share Document