scholarly journals A uniformly convergent adaptive particle filter

2005 ◽  
Vol 42 (4) ◽  
pp. 1053-1068 ◽  
Author(s):  
Anastasia Papavasiliou

Particle filters are Monte Carlo methods that aim to approximate the optimal filter of a partially observed Markov chain. In this paper, we study the case in which the transition kernel of the Markov chain depends on unknown parameters: we construct a particle filter for the simultaneous estimation of the parameter and the partially observed Markov chain (adaptive estimation) and we prove the convergence of this filter to the correct optimal filter, as time and the number of particles go to infinity. The filter presented here generalizes Del Moral's Monte Carlo particle filter.

2005 ◽  
Vol 42 (04) ◽  
pp. 1053-1068 ◽  
Author(s):  
Anastasia Papavasiliou

Particle filters are Monte Carlo methods that aim to approximate the optimal filter of a partially observed Markov chain. In this paper, we study the case in which the transition kernel of the Markov chain depends on unknown parameters: we construct a particle filter for the simultaneous estimation of the parameter and the partially observed Markov chain (adaptive estimation) and we prove the convergence of this filter to the correct optimal filter, as time and the number of particles go to infinity. The filter presented here generalizes Del Moral's Monte Carlo particle filter.


2016 ◽  
Author(s):  
Oona Kupiainen-Määttä

Abstract. Evaporation rates of small negatively charged sulfuric acid–ammonia clusters are determined by combining detailed cluster formation simulations with cluster distributions measured at CLOUD. The analysis is performed by varying the evaporation rates with Markov chain Monte Carlo (MCMC), running cluster formation simulations with each new set of evaporation rates and comparing the obtained cluster distributions to the measurements. In a second set of simulations, the fragmentation of clusters in the mass spectrometer due to energetic collisions is studied by treating also the fragmentation probabilities as unknown parameters and varying them with MCMC. This second set of simulations results in a better fit to the experimental data, suggesting that a large fraction of the observed HSO4− and HSO4− ⋅ H2SO4 signals may result from fragmentation of larger clusters, most importantly the HSO4− ⋅ (H2SO4)2 trimer.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 606
Author(s):  
Alaa Jamal ◽  
Raphael Linker

Particle filter has received increasing attention in data assimilation for estimating model states and parameters in cases of non-linear and non-Gaussian dynamic processes. Various modifications of the original particle filter have been suggested in the literature, including integrating particle filter with Markov Chain Monte Carlo (PF-MCMC) and, later, using genetic algorithm evolutionary operators as part of the state updating process. In this work, a modified genetic-based PF-MCMC approach for estimating the states and parameters simultaneously and without assuming Gaussian distribution for priors is presented. The method was tested on two simulation examples on the basis of the crop model AquaCrop-OS. In the first example, the method was compared to a PF-MCMC method in which states and parameters are updated sequentially and genetic operators are used only for state adjustments. The influence of ensemble size, measurement noise, and mutation and crossover parameters were also investigated. Accurate and stable estimations of the model states were obtained in all cases. Parameter estimation was more challenging than state estimation and not all parameters converged to their true value, especially when the parameter value had little influence on the measured variables. Overall, the proposed method showed more accurate and consistent parameter estimation than the PF-MCMC with sequential estimation, which showed highly conservative behavior. The superiority of the proposed method was more pronounced when the ensemble included a large number of particles and the measurement noise was low.


2011 ◽  
Vol 130-134 ◽  
pp. 3311-3315
Author(s):  
Nai Gao Jin ◽  
Fei Mo Li ◽  
Zhao Xing Li

A CUDA accelerated Quasi-Monte Carlo Gaussian particle filter (QMC-GPF) is proposed to deal with real-time non-linear non-Gaussian problems. GPF is especially suitable for parallel implementation as a result of the elimination of resampling step. QMC-GPF is an efficient counterpart of GPF using QMC sampling method instead of MC. Since particles generated by QMC method provides the best-possible distribution in the sampling space, QMC-GPF can make more accurate estimation with the same number of particles compared with traditional particle filter. Experimental results show that our GPU implementation of QMC-GPF can achieve the maximum speedup ratio of 95 on NVIDIA GeForce GTX 460.


Author(s):  
Farbod Akhavan Niaki ◽  
Durul Ulutan ◽  
Laine Mears

Several models have been proposed to describe the relationship between cutting parameters and machining outputs such as cutting forces and tool wear. However, these models usually cannot be generalized, due to the inherent uncertainties that exist in the process. These uncertainties may originate from machining, workpiece material composition, and measurements. A stochastic approach can be utilized to compensate for the lack of certainty in machining, particularly for tool wear evolution. The Markov Chain Monte Carlo (MCMC) method is a powerful tool for addressing uncertainties in machining parameter estimation. The Hybrid Metropolis-Gibbs algorithm has been chosen in this work to estimate the unknown parameters in a mechanistic tool wear model for end milling of difficult-to-machine alloys. The results show a good potential of the Markov Chain Monte Carlo modeling in prediction of parameters in the presence of uncertainties.


2015 ◽  
Vol 33 (6) ◽  
pp. 943-974 ◽  
Author(s):  
Pierre Del Moral ◽  
Ajay Jasra ◽  
Anthony Lee ◽  
Christopher Yau ◽  
Xiaole Zhang

Author(s):  
Yasushi Ota ◽  
Yu Jiang

This paper investigates the inverse option problems (IOP) in the extended Black--Scholes model arising in financial markets. We identify the volatility and the drift coefficient from the measured data in financial markets using a Bayesian inference approach, which is presented as an IOP solution. The posterior probability density function of the parameters is computed from the measured data. The statistics of the unknown parameters are estimated by a Markov Chain Monte Carlo (MCMC) algorithm, which exploits the posterior state space. The efficient sampling strategy of the MCMC algorithm enables us to solve inverse problems by the Bayesian inference technique. Our numerical results indicate that the Bayesian inference approach can simultaneously estimate the unknown trend and volatility coefficients from the measured data.


Sign in / Sign up

Export Citation Format

Share Document