scholarly journals A transiently expressed connexin is essential for anterior neural plate development in Ciona intestinalis

Development ◽  
2012 ◽  
Vol 140 (1) ◽  
pp. 147-155 ◽  
Author(s):  
C. Hackley ◽  
E. Mulholland ◽  
G. J. Kim ◽  
E. Newman-Smith ◽  
W. C. Smith
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan M. Werner ◽  
Maraki Y. Negesse ◽  
Dominique L. Brooks ◽  
Allyson R. Caldwell ◽  
Jafira M. Johnson ◽  
...  

AbstractPrimary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation.


2010 ◽  
Vol 344 (1) ◽  
pp. 495
Author(s):  
Makiko Iwafuchi-Doi ◽  
Tatsuya Takemoto ◽  
Yuzo Yoshida ◽  
Isao Matsuo ◽  
Jun Aruga ◽  
...  

Development ◽  
1997 ◽  
Vol 124 (14) ◽  
pp. 2709-2718 ◽  
Author(s):  
K. Shimamura ◽  
J.L. Rubenstein

The cellular and molecular mechanisms that regulate regional specification of the forebrain are largely unknown. We studied the expression of transcription factors in neural plate explants to identify tissues, and the molecules produced by these tissues, that regulate medial-lateral and local patterning of the prosencephalic neural plate. Molecular properties of the medial neural plate are regulated by the prechordal plate perhaps through the action of Sonic Hedgehog. By contrast, gene expression in the lateral neural plate is regulated by non-neural ectoderm and bone morphogenetic proteins. This suggests that the forebrain employs the same medial-lateral (ventral-dorsal) patterning mechanisms present in the rest of the central nervous system. We have also found that the anterior neural ridge regulates patterning of the anterior neural plate, perhaps through a mechanism that is distinct from those that regulate general medial-lateral patterning. The anterior neural ridge is essential for expression of BF1, a gene encoding a transcription factor required for regionalization and growth of the telencephalic and optic vesicles. In addition, the anterior neural ridge expresses Fgf8, and recombinant FGF8 protein is capable of inducing BF1, suggesting that FGF8 regulates the development of anterolateral neural plate derivatives. Furthermore, we provide evidence that the neural plate is subdivided into distinct anterior-posterior domains that have different responses to the inductive signals from the prechordal plate, Sonic Hedgehog, the anterior neural ridge and FGF8. In sum, these results suggest that regionalization of the forebrain primordia is established by several distinct patterning mechanisms: (1) anterior-posterior patterning creates transverse zones with differential competence within the neural plate, (2) patterning along the medial-lateral axis generates longitudinally aligned domains and (3) local inductive interactions, such as a signal(s) from the anterior neural ridge, further define the regional organization.


2004 ◽  
Vol 18 (5) ◽  
pp. 653-660 ◽  
Author(s):  
Estı́baliz L Fernandez ◽  
Camilla Svenson ◽  
Lennart Dencker ◽  
Anne-Lee Gustafson

Development ◽  
2010 ◽  
Vol 137 (13) ◽  
pp. 2197-2203 ◽  
Author(s):  
J. Tresser ◽  
S. Chiba ◽  
M. Veeman ◽  
D. El-Nachef ◽  
E. Newman-Smith ◽  
...  

2003 ◽  
Vol 3 (2) ◽  
pp. 225-230 ◽  
Author(s):  
V.V Novoselov ◽  
E.M Alexandrova ◽  
G.V Ermakova ◽  
A.G Zaraisky

2000 ◽  
Vol 98 (1-2) ◽  
pp. 3-17 ◽  
Author(s):  
Minori Shinya ◽  
Cathrin Eschbach ◽  
Matthew Clark ◽  
Hans Lehrach ◽  
Makoto Furutani-Seiki

2003 ◽  
Vol 264 (2) ◽  
pp. 537-549 ◽  
Author(s):  
Giovanna L Liguori ◽  
Diego Echevarría ◽  
Raffaele Improta ◽  
Massimo Signore ◽  
Eileen Adamson ◽  
...  

Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3645-3653 ◽  
Author(s):  
K.E. Whitlock ◽  
M. Westerfield

The primary olfactory sensory system is part of the PNS that develops from ectodermal placodes. Several cell types, including sensory neurons and support cells, differentiate within the olfactory placode to form the mature olfactory organ. The olfactory placodes are thought to arise from lateral regions of the anterior neural plate, which separate from the plate through differential cell movements. We determined the origins of the olfactory placodes in zebrafish by labeling cells along the anterior-lateral edge of the neural plate at times preceding the formation of the olfactory placodes and examining the later fates of the labeled cells. Surprisingly, we found that the olfactory placode arises from a field of cells, not from a discrete region of the anterior neural plate. This field extends posteriorly to the anterior limits of cranial neural crest and is bordered medially by telencephalic precursors. Cells giving rise to progeny in both the olfactory organ and telencephalon express the distal-less 3 gene. Furthermore, we found no localized pockets of cell division in the anterior-lateral neural plate cells preceding the appearance of the olfactory placode. We suggest that the olfactory placodes arise by anterior convergence of a field of lateral neural plate cells, rather than by localized separation and proliferation of a discrete group of cells.


Sign in / Sign up

Export Citation Format

Share Document