The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate

Development ◽  
2000 ◽  
Vol 127 (17) ◽  
pp. 3645-3653 ◽  
Author(s):  
K.E. Whitlock ◽  
M. Westerfield

The primary olfactory sensory system is part of the PNS that develops from ectodermal placodes. Several cell types, including sensory neurons and support cells, differentiate within the olfactory placode to form the mature olfactory organ. The olfactory placodes are thought to arise from lateral regions of the anterior neural plate, which separate from the plate through differential cell movements. We determined the origins of the olfactory placodes in zebrafish by labeling cells along the anterior-lateral edge of the neural plate at times preceding the formation of the olfactory placodes and examining the later fates of the labeled cells. Surprisingly, we found that the olfactory placode arises from a field of cells, not from a discrete region of the anterior neural plate. This field extends posteriorly to the anterior limits of cranial neural crest and is bordered medially by telencephalic precursors. Cells giving rise to progeny in both the olfactory organ and telencephalon express the distal-less 3 gene. Furthermore, we found no localized pockets of cell division in the anterior-lateral neural plate cells preceding the appearance of the olfactory placode. We suggest that the olfactory placodes arise by anterior convergence of a field of lateral neural plate cells, rather than by localized separation and proliferation of a discrete group of cells.

2016 ◽  
Vol 22 ◽  
pp. 41-44 ◽  
Author(s):  
Piyakorn Boonyoung ◽  
Sinlapachai Senarat ◽  
Jes Kettratad ◽  
Watiporn Yenchum ◽  
Pisit Poolprasert ◽  
...  

Context: Microarchitectural observation of the olfactory organ in Devario regina (Fowler, 1934) is still unknown.Objectives: The normal histology and chemical detailed of glycoprotein in D. regina olfactory organ were investigated using histochemical analysis.Materials and Methods: Fishes were collected from the Tapee River, Nakhon Si Thammarat Province, Thailand and were processed by the standard histological technique.Results: Microarchitecture of olfactory organ revealed that it was a paired olfactory sac. Each sac was composed of the olfactory chamber and many lamellae surrounding by olfactory epithelium. This epithelium contained the differential cell types in both sensory (sensory ciliated cells) and non-sensory olfactory epithelium. The special localization of glycoprotein was intensively detected on the mucous cells.Conclusion: This study provided the basic histology of the fish olfactory organ that will support the investigation regarding the physiological and ultrastructural analysis.J. bio-sci. 22: 41-44, 2014


Author(s):  
M. Fernanda Palominos ◽  
Kathleen E. Whitlock

The immune system of vertebrates is characterized by innate and adaptive immunity that function together to form the natural defense system of the organism. During development innate immunity is the first to become functional and is mediated primarily by phagocytic cells, including macrophages, neutrophils, and dendritic cells. In the olfactory sensory system, the same sensory neurons in contact with the external environment have their first synapse within the central nervous system. This unique architecture presents a potential gateway for the entry of damaging or infectious agents to the nervous system. Here we used zebrafish as a model system to examine the development of the olfactory organ and to determine whether it shares immune characteristics of a host defense niche described in other tissues. During early development, both neutrophils and macrophages appear coincident with the generation of the primitive immune cells. The appearance of neutrophils and macrophages in the olfactory organs occurs as the blood and lymphatic vascular system is forming in the same region. Making use of the neurogenic properties of the olfactory organ we show that damage to the olfactory sensory neurons in larval zebrafish triggers a rapid immune response by local and non-local neutrophils. In contrast, macrophages, although present in greater numbers, mount a slower response to damage. We anticipate our findings will open new avenues of research into the role of the olfactory-immune response during normal neurogenesis and damage-induced regeneration and contribute to our understanding of the formation of a potential host defense immune niche in the peripheral nervous system.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan M. Werner ◽  
Maraki Y. Negesse ◽  
Dominique L. Brooks ◽  
Allyson R. Caldwell ◽  
Jafira M. Johnson ◽  
...  

AbstractPrimary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation.


2010 ◽  
Vol 344 (1) ◽  
pp. 495
Author(s):  
Makiko Iwafuchi-Doi ◽  
Tatsuya Takemoto ◽  
Yuzo Yoshida ◽  
Isao Matsuo ◽  
Jun Aruga ◽  
...  

2018 ◽  
Vol 34 (1) ◽  
pp. 289-310 ◽  
Author(s):  
Edith Pierre-Jerome ◽  
Colleen Drapek ◽  
Philip N. Benfey

A major challenge in developmental biology is unraveling the precise regulation of plant stem cell maintenance and the transition to a fully differentiated cell. In this review, we highlight major themes coordinating the acquisition of cell identity and subsequent differentiation in plants. Plant cells are immobile and establish position-dependent cell lineages that rely heavily on external cues. Central players are the hormones auxin and cytokinin, which balance cell division and differentiation during organogenesis. Transcription factors and miRNAs, many of which are mobile in plants, establish gene regulatory networks that communicate cell position and fate. Small peptide signaling also provides positional cues as new cell types emerge from stem cell division and progress through differentiation. These pathways recruit similar players for patterning different organs, emphasizing the modular nature of gene regulatory networks. Finally, we speculate on the outstanding questions in the field and discuss how they may be addressed by emerging technologies.


2008 ◽  
Vol 36 (3) ◽  
pp. 421-424 ◽  
Author(s):  
Sue Vaughan ◽  
Keith Gull

Undoubtedly, there are fundamental processes driving the structural mechanics of cell division in eukaryotic organisms that have been conserved throughout evolution and are being revealed by studies on organisms such as yeast and mammalian cells. Precision of structural mechanics of cytokinesis is however probably no better illustrated than in the protozoa. A dramatic example of this is the protozoan parasite Trypanosoma brucei, a unicellular flagellated parasite that causes a devastating disease (African sleeping sickness) across Sub-Saharan Africa in both man and animals. As trypanosomes migrate between and within a mammalian host and the tsetse vector, there are periods of cell proliferation and cell differentiation involving at least five morphologically distinct cell types. Much of the existing cytoskeleton remains intact during these processes, necessitating a very precise temporal and spatial duplication and segregation of the many single-copy organelles. This structural precision is aiding progress in understanding these processes as we apply the excellent reverse genetics and post-genomic technologies available in this system. Here we outline our current understanding of some of the structural aspects of cell division in this fascinating organism.


1979 ◽  
Vol 81 (1) ◽  
pp. 123-136 ◽  
Author(s):  
N Agabian ◽  
M Evinger ◽  
G Parker

An essential event in developmental processes is the introduction of asymmetry into an otherwise undifferentiated cell population. Cell division in Caulobacter is asymmetric; the progeny cells are structurally different and follow different sequences of development, thus providing a useful model system for the study of differentiation. Because the progeny cells are different from one another, there must be a segregation of morphogenetic and informational components at some time in the cell cycle. We have examined the pattern of specific protein segregation between Caulobacter stalked and swarmer daughter cells, with the rationale that such a progeny analysis would identify both structurally and developmentally important proteins. To complement the study, we have also examined the pattern of protein synthesis during synchronous growth and in various cellular fractions. We show here, for the first time, that the association of proteins with a specific cell type may result not only from their periodicity of synthesis, but also from their pattern of distribution at the time of cell division. Several membrane-associated and soluble proteins are segregated asymmetrically between progeny stalked and swarmer cells. The data further show that a subclass of soluble proteins becomes associated with the membrane of the progeny stalked cells. Therefore, although the principal differentiated cell types possess different synthetic capabilities and characteristic proteins, the asymmetry between progeny stalked and swarmer cells is generated primarily by the preferential association of specific soluble proteins with the membrane of only one daughter cell. The majority of the proteins which exhibit this segregation behavior are synthesized during the entire cell cycle and exhibit relatively long, functional messenger RNA half-lives.


2018 ◽  
Author(s):  
Evgeny Zatulovskiy ◽  
Daniel F. Berenson ◽  
Benjamin R. Topacio ◽  
Jan M. Skotheim

Cell size is fundamental to function in different cell types across the human body because it sets the scale of organelle structures, biosynthesis, and surface transport1,2. Tiny erythrocytes squeeze through capillaries to transport oxygen, while the million-fold larger oocyte divides without growth to form the ~100 cell pre-implantation embryo. Despite the vast size range across cell types, cells of a given type are typically uniform in size likely because cells are able to accurately couple cell growth to division3–6. While some genes whose disruption in mammalian cells affects cell size have been identified, the molecular mechanisms through which cell growth drives cell division have remained elusive7–12. Here, we show that cell growth acts to dilute the cell cycle inhibitor Rb to drive cell cycle progression from G1 to S phase in human cells. In contrast, other G1/S regulators remained at nearly constant concentration. Rb is a stable protein that is synthesized during S and G2 phases in an amount that is independent of cell size. Equal partitioning to daughter cells of chromatin bound Rb then ensures that all cells at birth inherit a similar amount of Rb protein. RB overexpression increased cell size in tissue culture and a mouse cancer model, while RB deletion decreased cell size and removed the inverse correlation between cell size at birth and the duration of G1 phase. Thus, Rb-dilution by cell growth in G1 provides a long-sought cell autonomous molecular mechanism for cell size homeostasis.


Sign in / Sign up

Export Citation Format

Share Document