optic vesicles
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Karl J. Wahlin ◽  
Jie Cheng ◽  
Shawna L. Jurlina ◽  
Melissa K. Jones ◽  
Nicholas R. Dash ◽  
...  

Human pluripotent stem cells (PSCs) represent a powerful tool to investigate human eye development and disease. When grown in 3D, they can self-assemble into laminar organized retinas; however, variation in the size, shape and composition of individual organoids exists. Neither the microenvironment nor the timing of critical growth factors driving retinogenesis are fully understood. To explore early retinal development, we developed a SIX6-GFP reporter that enabled the systematic optimization of conditions that promote optic vesicle formation. We demonstrated that early hypoxic growth conditions enhanced SIX6 expression and promoted eye formation. SIX6 expression was further enhanced by sequential inhibition of Wnt and activation of sonic hedgehog signaling. SIX6 + optic vesicles showed RNA expression profiles that were consistent with a retinal identity; however, ventral diencephalic markers were also present. To demonstrate that optic vesicles lead to bona fide “retina-like” structures we generated a SIX6-GFP/POU4F2-tdTomato dual reporter line that labeled the entire developing retina and retinal ganglion cells, respectively. Additional brain regions, including the hypothalamus and midbrain-hindbrain (MBHB) territories were identified by harvesting SIX6 + /POU4F2- and SIX6- organoids, respectively. Using RNAseq to study transcriptional profiles we demonstrated that SIX6-GFP and POU4F2-tdTomato reporters provided a reliable readout for developing human retina, hypothalamus, and midbrain/hindbrain organoids.


Author(s):  
Heuy-Ching Wang ◽  
Ramesh R. Kaini ◽  
Christina L. Rettinger ◽  
Heuy-Ching Wang

Background: Human tissue/organ development is a complex, highly orchestrated process, regulated in part by the surrounding extracellular matrix (ECM). Every complex tissue, including the retina, has a unique ECM configuration that plays a critical role in cellular differentiation, adhesion, migration, and maturation. Aim: To characterize ECM expression of human induced pluripotent stem cell-derived optic vesicles (iPSC-OVs). Methods: A 3- dimensional (3D) in vitro suspension culture system was used to direct differentiation of human induced pluripotent stem cells (iPSCs) into optic vesicles (OVs). Stepwise differentiation of iPSCs into retinal progenitor cells was confirmed by sequential expression of OTX2, SOX1, SIX6, LHX2, PAX6, and CHX10. Expression of ECM genes in iPSC-derived OVs was analyzed by RT2 ProfilerTM PCR Array, whereas immunofluorescence staining was performed to detect ECM proteins in the OVs. Results: A number of cell adhesion molecules (CAMs) previously reported to be abundantly expressed in iPSCs such as E-cadherin, Intercellular adhesion molecule-1 (ICAM1), Integrin-α L, Integrin-α M, Integrin-α 6 were downregulated while neural and retina specific CAMs including neural cell adhesion molecule 1 (NCAM1), neural plakophilin-related armadillo repeat protein (NPRAP), Integrin-α 1 and Integrin-α 4 were upregulated. Several glycoproteins that have been reported to play key roles during retinogenesis, namely CD44, Tenascin C, Tenascin R, Neurocan, Neuroglycan C, Delta 2 Catenin, Vitronectin, and Reelin were also present. Conclusion: We have identified an array of ECM proteins that were expressed during retinogenesis. Further characterization of these proteins will lead to a better understanding of retinal development.


2021 ◽  
Vol 9 (3) ◽  
pp. 38
Author(s):  
Bojana Radojevic ◽  
Shannon M. Conley ◽  
Lea D. Bennett

Human induced pluripotent stem cells (iPSCs) are differentiated into three-dimensional (3D) retinal organoids to study retinogenesis and diseases that would otherwise be impossible. The complexity and low yield in current protocols remain a technical challenge, particularly for inexperienced personnel. Differentiation protocols require labor-intensive and time-consuming dissection of optic vesicles (OVs). Here we compare this method with a suspension method of developing retinal organoids. iPSCs were differentiated with standard protocols but the suspension-grown method omitted the re-plating of embryoid bodies and dissection of OVs. All other media and treatments were identical between developmental methods. Developmental maturation was evaluated with RT-qPCR and immunocytochemistry. Dissection- and suspension-derived retinal organoids displayed temporal biogenesis of retinal cell types. Differences in retinal organoids generated by the two methods of differentiation included temporal developmental and the organization of neural retina layers. Retinal organoids grown in suspension showed delayed development and disorganized retinal layers compared to the dissected retinal organoids. We found that omitting the re-plating of EBs to form OVs resulted in numerous OVs that were easy to identify and matured along a retinal lineage. While more efficient, the suspension method led to retinal organoids with disorganized retinal layers compared to those obtained using conventional dissection protocols.


2021 ◽  
Author(s):  
Elke Gabriel ◽  
Walid Albanna ◽  
Giovanni Pasquini ◽  
Anand Ramani ◽  
Natasa Josipovic ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Antonio Jacobo Lopez ◽  
Sangbae Kim ◽  
Xinye Qian ◽  
Jeffrey Rogers ◽  
J. Timothy Stout ◽  
...  

Purpose: To compare the timing and efficiency of the development of non-human primate (NHP) derived retinal organoids in comparison to those derived from human embryonic stem cells. Methods: Human embryonic stem cells (hESCs) and induced-pluripotent stem cells (rhiPSCs) derived from non-human primates (Macaca mulatta) were differentiated into retinal organoids by using an established differentiation protocol. Briefly, embryoid bodies were formed from pluripotent stem cells and induced into a neural lineage with neural induction media with the addition of BMP4. Thereafter, self-formation of optic vesicles was allowed to form in a 2D culture in retinal differentiation media (RDM). Optic vesicles were then manually harvested and cultured in suspension in 3D-RDM media until analysis. Differences in the timing of differentiation and efficiency of retinal organoid development were assessed by light microscopy, electron microscopy, immunocytochemistry, and single-cell transcriptomics. Results: Generation of retinal organoids was achieved from both human and several NHP pluripotent stem cells lines. All rhiPSC lines resulted in retinal differentiation with the formation of optic vesicle-like structures similar to what has been observed in hESC retinal organoids. NHP retinal organoids had laminated structure and were composed of mature retinal cell types including cone and rod photoreceptors. Single cell RNA sequencing was conducted at two time points, which allowed identification of cell types and characterization of developmental trajectory in the developing organoid. Important differences between rhesus and human cells were measured regarding the timing and efficiency of retinal organoid differentiation. While the culture of NHP-derived iPSCs is relatively difficult compared to human stem cells, the generation of retinal organoids is feasible and may be less time consuming due to an intrinsically faster timing of retinal differentiation. Conclusions: Retinal organoids produced from iPSCs derived from Rhesus monkey using established protocols differentiate through the stages of organoid development faster than those derived from human stem cells. The production of NHP retinal organoids may be advantageous to reduce experimental time and cost for basic biology studies in retinogenesis as well as for preclinical trials in NHPs studying retinal allograft transplantation.


2021 ◽  
Author(s):  
Guillermo Martinez-Ara ◽  
Nuria Taberner ◽  
Mami Takayama ◽  
Elissavet Sandaltzopoulou ◽  
Casandra Edelweiss Villava ◽  
...  

During embryonic development, cellular forces synchronize in space and time to generate functional tissue shapes. Apical constriction is one of these force-generating processes, and it is necessary to modulate epithelial curvature in fundamental morphogenetic events, such as neural tube folding. The emerging field of synthetic developmental biology proposes bottom-up approaches to examine the contribution of each cellular process to complex morphogenesis. However, the shortage of tools to manipulate three-dimensional (3D) shapes of mammalian tissues currently hinders the progress of the field. Here we report the development of 'OptoShroom3', a new optogenetic tool that achieves fast spatiotemporal control of apical constriction in mammalian epithelia. Activation of OptoShroom3 through illumination of individual cells in an epithelial cell sheet reduced their apical surface while illumination of groups of cells caused deformation in the adjacent regions. By using OptoShroom3, we further manipulated 3D tissue shapes. Light-induced apical constriction provoked the folding of epithelial cell colonies on soft gels. Its application to murine and human neural organoids led to thickening of neuroepithelia, apical lumen reduction in optic vesicles, and flattening in neuroectodermal tissues. These results show that spatiotemporal control of apical constriction can trigger several types of 3D deformation depending on the initial tissue context.


2021 ◽  
Author(s):  
Elke Gabriel ◽  
Walid Albanna ◽  
Giovanni Pasquini ◽  
Anand Ramani ◽  
Natasa Josipovic ◽  
...  

During embryogenesis, optic vesicles develop from the diencephalon via a complex process of organogenesis. Using iPSC-derived human brain organoids, we attempted to simplify the complexities and demonstrate the formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day thirty, brain organoids could assemble optic vesicles, which progressively develop as visible structures within sixty days. These optic vesicle-containing brain organoids (OVB-Organoids) constitute a developing optic vesicle's cellular components, including the primitive cornea and lens-like cells, developing photoreceptors, retinal pigment epithelia, axon-like projections, and electrically active neuronal networks. Besides, OVB-Organoids also display synapsin-1, CTIP-positive, myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photoreceptor activity of OVB-Organoids, and light sensitivities could be reset after a transient photo bleach blinding. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow conducting interorgan interaction studies within a single organoid.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
R. G. Loosemore ◽  
S. D. Matthaei ◽  
T. C. Stanger

Abstract The primordial eye field of the vertebrate embryo is a single entity of retinal progenitor cells spanning the anterior neural plate before bifurcating to form bilateral optic vesicles. Here we review fate mapping data from zebrafish suggesting that prior to evagination of the optic vesicles the eye field may undergo a Maypole-plait migration of progenitor cells through the midline influenced by the anteriorly subducting diencephalon. Such an enigmatic translocation of scaffolding progenitors could have evolutionary significance if pointing, by way of homology, to an ancient mechanism for transition of the single eye field in chordates to contralateral eye fields in vertebrates.


Sign in / Sign up

Export Citation Format

Share Document