scholarly journals Modular development of the teleost trunk along the dorsoventral axis and zic1/zic4 as selector genes in the dorsal module

Development ◽  
2013 ◽  
Vol 140 (7) ◽  
pp. 1486-1496 ◽  
Author(s):  
T. Kawanishi ◽  
T. Kaneko ◽  
Y. Moriyama ◽  
M. Kinoshita ◽  
H. Yokoi ◽  
...  

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 183-194
Author(s):  
Douglas B Rusch ◽  
Thomas C Kaufman

Abstract The gene proboscipedia (pb) is a member of the Antennapedia complex in Drosophila and is required for the proper specification of the adult mouthparts. In the embryo, pb expression serves no known function despite having an accumulation pattern in the mouthpart anlagen that is conserved across several insect orders. We have identified several of the genes necessary to generate this embryonic pattern of expression. These genes can be roughly split into three categories based on their time of action during development. First, prior to the expression of pb, the gap genes are required to specify the domains where pb may be expressed. Second, the initial expression pattern of pb is controlled by the combined action of the genes Deformed (Dfd), Sex combs reduced (Scr), cap'n'collar (cnc), and teashirt (tsh). Lastly, maintenance of this expression pattern later in development is dependent on the action of a subset of the Polycomb group genes. These interactions are mediated in part through a 500-bp regulatory element in the second intron of pb. We further show that Dfd protein binds in vitro to sequences found in this fragment. This is the first clear demonstration of autonomous positive cross-regulation of one Hox gene by another in Drosophila melanogaster and the binding of Dfd to a cis-acting regulatory element indicates that this control might be direct.



Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 1067-1074
Author(s):  
Susan J Brown ◽  
John P Fellers ◽  
Teresa D Shippy ◽  
Elizabeth A Richardson ◽  
Mark Maxwell ◽  
...  

Abstract The homeotic selector genes of the red flour beetle, Tribolium castaneum, are located in a single cluster. We have sequenced the region containing the homeotic selector genes required for proper development of the head and anterior thorax, which is the counterpart of the ANTC in Drosophila. This 280-kb interval contains eight homeodomain-encoding genes, including single orthologs of the Drosophila genes labial, proboscipedia, Deformed, Sex combs reduced, fushi tarazu, and Antennapedia, as well as two orthologs of zerknüllt. These genes are all oriented in the same direction, as are the Hox genes of amphioxus, mice, and humans. Although each transcription unit is similar to its Drosophila counterpart in size, the Tribolium genes contain fewer introns (with the exception of the two zerknüllt genes), produce shorter mRNAs, and encode smaller proteins. Unlike the ANTC, this region of the Tribolium HOMC contains no additional genes.



Development ◽  
2002 ◽  
Vol 129 (5) ◽  
pp. 1165-1174 ◽  
Author(s):  
Guoyan Zhao ◽  
James B. Skeath

In the Drosophila embryonic central nervous system, neural stem cells, called neuroblasts, acquire fates in a position-specific manner. Recent work has identified a set of genes that functions along the dorsoventral axis to enable neuroblasts that develop in different dorsoventral domains to acquire distinct fates. These genes include the evolutionarily conserved transcription factors ventral nerve cord defective and intermediate neuroblasts defective, as well as the Drosophila EGF receptor. We show that the Sox-domain-containing gene Dichaete/fish-hook also plays a crucial role to pattern the neuroectoderm along the DV axis. Dichaete is expressed in the medial and intermediate columns of the neuroectoderm, and mutant analysis indicates that Dichaete regulates cell fate and neuroblast formation in these domains. Molecular epistasis tests, double mutant analysis and dosage-sensitive interactions demonstrate that during these processes, Dichaete functions in parallel with ventral nerve cord defective and intermediate neuroblasts defective, and downstream of EGF receptor signaling to mediate its effect on development. These results identify Dichaete as an important regulator of dorsoventral pattern in the neuroectoderm, and indicate that Dichaete acts in concert with ventral nerve cord defective and intermediate neuroblasts defective to regulate pattern and cell fate in the neuroectoderm.



Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4053-4063 ◽  
Author(s):  
S.S. Blair ◽  
A. Ralston

It is thought that the posterior expression of the ‘selector’ genes engrailed and invected control the subdivision of the growing wing imaginal disc of Drosophila into anterior and posterior lineage compartments. At present, the cellular mechanisms by which separate lineage compartments are maintained are not known. Most models have assumed that the presence or absence of selector gene expression autonomously drives the expression of compartment-specific adhesion or recognition molecules that inhibit intermixing between compartments. However, our present understanding of Hedgehog signalling from posterior to anterior cells raises some interesting alternative models based on a cell's response to signalling. We show here that anterior cells that lack smoothened, and thus the ability to receive the Hedgehog signal, no longer obey a lineage restriction in the normal position of the anterior-posterior boundary. Rather these clones extend into anatomically posterior territory, without any changes in engrailed/invected gene expression. We have also examined clones lacking both en and inv; these too show complex behaviors near the normal site of the compartment boundary, and do not always cross entirely into anatomically anterior territory. Our results suggest that compartmentalization is a complex process involving intercompartmental signalling; models based on changes in affinity or growth will be discussed.



Development ◽  
1982 ◽  
Vol 72 (1) ◽  
pp. 225-249
Author(s):  
Charles Cima ◽  
Philip Grant

Development of the Xenopus laevis optic nerve was studied by light and electron microscopy from embryonic stage 26, before the retina has formed, to juveniles, 8 months post-metamorphic. Low-power EM photographs of sections through the retinal optic nerve (RON), middle optic nerve (MON) and chiasmatic optic nerve (CON) were prepared at different stages and the areas containing large axons (0·5 μm) were traced in optic nerve reconstructions. Ordering of fibre size along a dorsoventral axis was noted in the embryonic nerve, and this pattern persisted throughout development. Most large fibres, myelinated and unmyelinated, occupy an eccentric dorsocentral position in the MON while small axons are seen in a ventral peripheral crescent. In the CON, the dorsal one third to one half is occupied by large fibres while the ventral CON contains small fibres exclusively. If, as assumed, large axons are older than small axons (0·1–0·3 μm), then patterns of large and small axons along the nerve might reveal a chronotopic fibre ordering. Chronotopic ordering was confirmed by autoradiographic analysis of the distribution of old, labelled fibres and young, unlabelled newly arriving fibres in optic nerves between stage 51 and 57. The young—old labelling pattern corresponds to the small and large axon patterns respectively, in all sections of the optic nerve. Chronotopic ordering of fibres in the developing optic nerve can be explained, in part, by the dorsoventral asymmetric marginal growth of the developing retina and the phenomenon of fibre following as ganglion cell axons join near neighbour fascicles in the retina, converge at the optic disc and grow through the optic nerve.





Sign in / Sign up

Export Citation Format

Share Document