Regulation of proboscipedia in Drosophila by Homeotic Selector Genes

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 183-194
Author(s):  
Douglas B Rusch ◽  
Thomas C Kaufman

Abstract The gene proboscipedia (pb) is a member of the Antennapedia complex in Drosophila and is required for the proper specification of the adult mouthparts. In the embryo, pb expression serves no known function despite having an accumulation pattern in the mouthpart anlagen that is conserved across several insect orders. We have identified several of the genes necessary to generate this embryonic pattern of expression. These genes can be roughly split into three categories based on their time of action during development. First, prior to the expression of pb, the gap genes are required to specify the domains where pb may be expressed. Second, the initial expression pattern of pb is controlled by the combined action of the genes Deformed (Dfd), Sex combs reduced (Scr), cap'n'collar (cnc), and teashirt (tsh). Lastly, maintenance of this expression pattern later in development is dependent on the action of a subset of the Polycomb group genes. These interactions are mediated in part through a 500-bp regulatory element in the second intron of pb. We further show that Dfd protein binds in vitro to sequences found in this fragment. This is the first clear demonstration of autonomous positive cross-regulation of one Hox gene by another in Drosophila melanogaster and the binding of Dfd to a cis-acting regulatory element indicates that this control might be direct.

Development ◽  
1992 ◽  
Vol 116 (3) ◽  
pp. 805-810 ◽  
Author(s):  
D. Moazed ◽  
P.H. O'Farrell

The stable maintenance of expression patterns of homeotic genes depends on the function of a number of negative trans-regulators, termed the Polycomb (Pc) group of genes. We have examined the pattern of expression of the Drosophila segment polarity gene, engrailed (en), in embryos mutant for several different members of the Pc group. Here we report that embryos mutant for two or more Pc group genes show strong ectopic en expression, while only weak derepression of en occurs in embryos mutant for a single Pc group gene. This derepression is independent of two known activators of en expression: en itself and wingless. Additionally, in contrast to the strong ectopic expression of homeotic genes observed in extra sex combs- (esc-) mutant embryos, the en expression pattern is nearly normal in esc- embryos. This suggests that the esc gene product functions in a pathway independent of the other genes in the group. The data indicate that the same group of genes is required for stable restriction of en expression to a striped pattern and for the restriction of expression of homeotic genes along the anterior-posterior axis, and support a global role for the Pc group genes in stable repression of activity of developmental selector genes.


Development ◽  
1996 ◽  
Vol 122 (7) ◽  
pp. 2189-2197 ◽  
Author(s):  
D. LaJeunesse ◽  
A. Shearn

The products of the Polycomb group of genes are cooperatively involved in repressing expression of homeotic selector genes outside of their appropriate anterior/posterior boundaries. Loss of maternal and/or zygotic function of Polycomb group genes results in the ectopic expression of both Antennapedia Complex and Bithorax Complex genes. The products of the trithorax group of genes are cooperatively involved in maintaining active expression of homeotic selector genes within their appropriate anterior/posterior boundaries. Loss of maternal and/or zygotic function of trithorax group genes results in reduced expression of both Antennapedia Complex and Bithorax Complex genes. Although Enhancer of zeste has been classified as a member of the Polycomb group, in this paper we show that Enhancer of zeste can also be classified as a member of the trithorax group. The requirement for Enhancer of zeste activity as either a trithorax group or Polycomb group gene depends on the homeotic selector gene locus as well as on spatial and temporal cues.


Development ◽  
1995 ◽  
Vol 121 (4) ◽  
pp. 1217-1226
Author(s):  
E. Pogge yon Strandmann ◽  
G.U. Ryffel

The tissue-specific transcription factors LFB1 (HNF1) and LFB3 (vHNF1) mainly expressed in liver, kidney and intestine are homeoproteins that interact with the regulatory element HP1. The HP1 sequence constitutes one of the most important cis-acting elements in liver-specifically expressed genes, while its function in other cell types containing LFB1 and LFB3 is not fully understood. In mammals, LFB1 activity is modulated by DCoH, a cofactor that stimulates the LFB1 transactivation significantly. Using the rat cDNA probe, we cloned the corresponding Xenopus sequence XDCoH, encoding a 104 amino acid protein, that is 85% identical to the rat protein. XDCoH enhances the LFB1-dependent transactivation potential in transfection experiments and interacts in vitro directly with LFB1 and its variant form LFB3. The protein is detectable in liver and kidney extracts of adult frogs and in small amounts also in lung and stomach, organs expressing LFB1 and/or LFB3 protein as well. To investigate the possible involvement of XDCoH in Xenopus development, we analyzed its temporal and spatial expression pattern during early embryogenesis. XDCoH is a maternal factor, although LFB1 is absent in the egg. In early cleavage stages, the protein is detectable in the cytoplasm of each blastomere and enters the nuclei of the cells as early as the zygotic transcription in the Xenopus embryo starts. The amount of XDCoH increases dramatically following neurulation, when the formation of liver, pronephros and other organs takes place. Whole-mount immunostaining demonstrates that, in the developing larvae, XDCoH is localized in the nuclei of the hepatocytes, the gut cells and the pronephric cells, tissues of mesodermal and endodermal origin known to contain LFB1 and LFB3. Surprisingly it is also present in the pigmented epithelium surrounding the eye of the embryo, which is derived from the anterior part of the ectodermal neural plates and lacks LFB1. The tissue distribution of XDCoH during embryogenesis suggests that XDCoH is involved in determination and differentiation of various unrelated cell types. It seems likely that XDCoH interaction is not only essential for the function of LFB1 and LFB3 but also for certain other transcription factors.


Development ◽  
1997 ◽  
Vol 124 (3) ◽  
pp. 721-729 ◽  
Author(s):  
N. Core ◽  
S. Bel ◽  
S.J. Gaunt ◽  
M. Aurrand-Lions ◽  
J. Pearce ◽  
...  

In Drosophila, the trithorax-group and the Polycomb-group genes are necessary to maintain the expression of the homeobox genes in the appropriate segments. Loss-of-function mutations in those groups of genes lead to misexpression of the homeotic genes resulting in segmental homeotic transformations. Recently, mouse homologues of the Polycomb-group genes were identified including M33, the murine counterpart of Polycomb. In this report, M33 was targeted in mice by homologous recombination in embryonic stem (ES) cells to assess its function during development. Homozygous M33 (−/−) mice show greatly retarded growth, homeotic transformations of the axial skeleton, sternal and limb malformations and a failure to expand in vitro of several cell types including lymphocytes and fibroblasts. In addition, M33 null mutant mice show an aggravation of the skeletal malformations when treated to RA at embryonic day 7.5, leading to the hypothesis that, during development, the M33 gene might play a role in defining access to retinoic acid response elements localised in the regulatory regions of several Hox genes.


2004 ◽  
Vol 385 (1) ◽  
pp. 207-216 ◽  
Author(s):  
Lauren M. CAGEN ◽  
Xiong DENG ◽  
Henry G. WILCOX ◽  
Edwards A. PARK ◽  
Rajendra RAGHOW ◽  
...  

The enhanced synthesis of fatty acids in the liver and adipose tissue in response to insulin is critically dependent on the transcription factor SREBP-1c (sterol-regulatory-element-binding protein 1c). Insulin increases the expression of the SREBP-1c gene in intact liver and in hepatocytes cultured in vitro. To learn the mechanism of this stimulation, we analysed the activation of the rat SREBP-1c promoter and its truncated or mutated congeners driving a luciferase reporter gene in transiently transfected rat hepatocytes. The rat SREBP-1c promoter contains binding sites for LXR (liver X receptor), Sp1, NF-Y (nuclear factor-Y) and SREBP itself. We have found that each of these sites is required for the full stimulatory response of the SREBP-1c promoter to insulin. Mutation of either the putative LXREs (LXR response elements) or the SRE (sterol response element) in the proximal SREBP-1c promoter reduced the stimulatory effect of insulin by about 50%. Insulin and the LXR agonist TO901317 increased the association of SREBP-1 with the SREBP-1c promoter. Ectopic expression of LXRα or SREBP-1c increased activity of the SREBP-1c promoter, and this effect is further enhanced by insulin. The Sp1 and NF-Y sites adjacent to the SRE are also required for full activation of the SREBP-1c promoter by insulin. We propose that the combined actions of the SRE, LXREs, Sp1 and NF-Y elements constitute an insulin-responsive cis-acting unit of the SREBP-1c gene in the liver.


2002 ◽  
Vol 195 (6) ◽  
pp. 759-770 ◽  
Author(s):  
Hideaki Ohta ◽  
Akihisa Sawada ◽  
Ji Yoo Kim ◽  
Sadao Tokimasa ◽  
Seiji Nishiguchi ◽  
...  

The rae28 gene (rae28), also designated as mph1, is a mammalian ortholog of the Drosophila polyhomeotic gene, a member of Polycomb group genes (PcG). rae28 constitutes PcG complex 1 for maintaining transcriptional states which have been once initiated, presumably through modulation of the chromatin structure. Hematopoietic activity was impaired in the fetal liver of rae28-deficient animals (rae28−/−), as demonstrated by progressive reduction of hematopoietic progenitors of multilineages and poor expansion of colony forming units in spleen (CFU-S12) during embryonic development. An in vitro long-term culture-initiating cell assay suggested a reduction in hematopoietic stem cells (HSCs), which was confirmed in vivo by reconstitution experiments in lethally irradiated congenic recipient mice. The competitive repopulating units (CRUs) reflect HSCs supporting multilineage blood-cell production. CRUs were generated, whereas the number of CRUs was reduced by a factor of 20 in the rae28−/− fetal liver. We also performed serial transplantation experiments to semiquantitatively measure self-renewal activity of CRUs in vivo. Self-renewal activity of CRUs was 15-fold decreased in rae28−/−. Thus the compromised HSCs were presumed to reduce hematopoietic activity in the rae28−/− fetal liver. This is the first report to suggest that rae28 has a crucial role in sustaining the activity of HSCs to maintain hematopoiesis.


Reproduction ◽  
2008 ◽  
Vol 136 (6) ◽  
pp. 777-785 ◽  
Author(s):  
Pablo J Ross ◽  
Neli P Ragina ◽  
Ramon M Rodriguez ◽  
Amy E Iager ◽  
Kannika Siripattarapravat ◽  
...  

Trimethylation of histone H3 at lysine 27 (H3K27me3) is established by polycomb group genes and is associated with stable and heritable gene silencing. The aim of this study was to characterize the expression of polycomb genes and the dynamics of H3K27me3 during bovine oocyte maturation and preimplantation development. Oocytes and in vitro-produced embryos were collected at different stages of development. Polycomb gene expression was analyzed by real-time quantitative RT-PCR and immunofluorescence. Global H3K27me3 levels were determined by semiquantitative immunofluorescence. Transcripts for EZH2, EED, and SUZ12 were detected at all stages analyzed, with EZH2 levels being the highest of the three at early stages of development. By the time the embryo reached the blastocyst stage, the level of PcG gene mRNA levels significantly increased. Immunofluorescence staining indicated nuclear expression of EZH2 at all stages while nuclear localized EED and SUZ12 were only evident at the morula and blastocyst stages. Semiquantitative analysis of H3K27me3 levels showed that nuclear fluorescence intensity was the highest in immature oocytes, which steadily decreased after fertilization to reach a nadir at the eight-cell stage, and then increased at the blastocyst stage. These results suggest that the absence of polycomb repressive complex 2 proteins localized to the nucleus of early embryos could be responsible for the gradual decrease in H3K27me3 during early preimplantation development.


Development ◽  
1998 ◽  
Vol 125 (17) ◽  
pp. 3483-3496 ◽  
Author(s):  
F. Tie ◽  
T. Furuyama ◽  
P.J. Harte

The Polycomb Group gene esc encodes an evolutionarily conserved protein required for transcriptional silencing of the homeotic genes. Unlike other Polycomb Group genes, esc is expressed and apparently required only during early embryogenesis, suggesting it is required for the initial establishment of silencing but not for its subsequent maintenance. We present evidence that the ESC protein interacts directly with E(Z), another Polycomb Group protein required for silencing of the homeotic genes. We show that the most highly conserved region of ESC, containing seven WD motifs that are predicted to fold into a beta-propeller structure, mediate its binding to a conserved N-terminal region of E(Z). Mutations in the WD region that perturb ESC silencing function in vivo also perturb binding to E(Z) in vitro. The entire WD region forms a trypsin-resistant structure, like known beta -propeller domains, and mutations that would affect the predicted ESC beta-propeller perturb its trypsin-resistance, while a putative structure-conserving mutation does not. We show by co-immunoprecipitation that ESC and E(Z) are directly associated in vivo and that they also co-localize at many chromosomal binding sites. Since E(Z) is required for binding of other Polycomb Group proteins to chromosomes, these results suggest that formation of an E(Z):ESC complex at Polycomb Response Elements may be an essential prerequisite for the establishment of silencing.


Development ◽  
2001 ◽  
Vol 128 (6) ◽  
pp. 993-1004 ◽  
Author(s):  
D. Beuchle ◽  
G. Struhl ◽  
J. Muller

Early in Drosophila embryogenesis, transcriptional repressors encoded by Gap genes prevent the expression of particular combinations of Hox genes in each segment. During subsequent development, those Hox genes that were initially repressed in each segment remain off in all the descendent cells, even though the Gap repressors are no longer present. This phenomenon of heritable silencing depends on proteins of the Polycomb Group (PcG) and on cis-acting Polycomb response elements (PREs) in the Hox gene loci. We have removed individual PcG proteins from proliferating cells and then resupplied these proteins after a few or several cell generations. We show that most PcG proteins are required throughout development: when these proteins are removed, Hox genes become derepressed. However, we find that resupply of at least some PcG proteins can cause re-repression of Hox genes, provided that it occurs within a few cell generations of the loss of repression. These results suggest a functional distinction between transcriptional repression and heritable silencing: in at least some contexts, Hox genes can retain the capacity to be heritably silenced, despite being transcribed and replicated. We propose that silenced Hox genes bear a heritable, molecular mark that targets them for transcriptional repression. Some PcG proteins may be required to define and propagate this mark; others may function to repress the transcription of Hox genes that bear the mark.


1993 ◽  
Vol 13 (12) ◽  
pp. 7604-7611
Author(s):  
C Bornaes ◽  
M W Ignjatovic ◽  
P Schjerling ◽  
M C Kielland-Brandt ◽  
S Holmberg

CHA1 of Saccharomyces cerevisiae is the gene for the catabolic L-serine (L-threonine) dehydratase, which is responsible for biodegradation of serine and threonine. We have previously shown that expression of the CHA1 gene is transcriptionally induced by serine and threonine. Northern (RNA) analysis showed that the additional presence of good nitrogen sources affects induction. This may well be due to inducer exclusion. To identify interactions of cis-acting elements with trans activators of the CHA1 promoter, we performed band shift assays of nuclear protein extracts with CHA1 promoter fragments. By this approach, we identified a protein-binding site of the CHA1 promoter. The footprint of this protein contains the ABF1-binding site consensus sequence. This in vitro binding activity is present irrespectively of CHA1 induction. By deletion analysis, two other elements of the CHA1 promoter, UAS1CHA and UAS2CHA, which are needed for induction of the CHA1 gene were identified. Each of the two sequence elements is sufficient to confer serine and threonine induction upon the CYC1 promoter when substituting its upstream activating sequence. Further, in a cha4 mutant strain which is unable to grow with serine or threonine as the sole nitrogen source, the function of UAS1CHA, as well as that of UAS2CHA, is obstructed.


Sign in / Sign up

Export Citation Format

Share Document