Sea urchin morphogenesis and cell-hyalin adhesion are perturbed by a monoclonal antibody specific for hyalin

Development ◽  
1988 ◽  
Vol 104 (3) ◽  
pp. 391-402 ◽  
Author(s):  
D.L. Adelson ◽  
T. Humphreys

We have generated and characterized a monoclonal antibody (McA Tg-HYL) that recognizes sea urchin hyalin as evidenced by immunofluorescence staining of the hyaline layer (HL) and immunoblot staining of the hyalin protein band. On immunoblots of HL extracts only the hyalin protein reacted with McA Tg-HYL. Immunoprecipitates of radioactive proteins from embryos incubated with [35S]methionine yielded radioactive hyalin and 190, 140 and 105 × 10(3) Mr proteins associated with hyalin. McA Tg-HYL was generated against Tripneustes gratilla embryos but reacts with hyalin from the distantly related sea urchin species, Colobocentrotus atratus, Strongylocentrotus purpuratus, Arbacia punctulata, Lytechinus variegatus and Lytechinus pictus. Developing embryos of the above-mentioned six species were treated with McA Tg-HYL and did not gastrulate or form arms. Observations of treated embryos revealed areas of separation of the hyaline layer from the underlying embryonic cells, suggesting that McA Tg-HYL was interfering with binding of the cells to the HL. Using the centrifugation-based adhesion assay of McClay et al. (Proc. natn. Acad. Sci. U.S.A. 78, 4975–4979, 1981), Fab' fragments of McA Tg-HYL were found to inhibit cell-hyalin binding. McA Tg-HYL did not inhibit hyalin gelation in vitro or the reaggregation of dissociated blastula cells. We postulate that McA Tg-HYL recognizes an evolutionarily conserved hyalin domain involved in cell-hyalin binding and required for normal epithelial folding.

1997 ◽  
Vol 200 (22) ◽  
pp. 2881-2892 ◽  
Author(s):  
P Leong ◽  
D Manahan

Early stages of animal development have high mass-specific rates of metabolism. The biochemical processes that establish metabolic rate and how these processes change during development are not understood. In this study, changes in Na+/K+-ATPase activity (the sodium pump) and rate of oxygen consumption were measured during embryonic and early larval development for two species of sea urchin, Strongylocentrotus purpuratus and Lytechinus pictus. Total (in vitro) Na+/K+-ATPase activity increased during development and could potentially account for up to 77 % of larval oxygen consumption in Strongylocentrotus purpuratus (pluteus stage) and 80 % in Lytechinus pictus (prism stage). The critical issue was addressed of what percentage of total enzyme activity is physiologically active in living embryos and larvae and thus what percentage of metabolism is established by the activity of the sodium pump during development. Early developmental stages of sea urchins are ideal for understanding the in vivo metabolic importance of Na+/K+-ATPase because of their small size and high permeability to radioactive tracers (86Rb+) added to sea water. A comparison of total and in vivo Na+/K+-ATPase activities revealed that approximately half of the total activity was utilized in vivo. The remainder represented a functionally active reserve that was subject to regulation, as verified by stimulation of in vivo Na+/K+-ATPase activity in the presence of the ionophore monensin. In the presence of monensin, in vivo Na+/K+-ATPase activities in embryos of S. purpuratus increased to 94 % of the maximum enzyme activity measured in vitro. Stimulation of in vivo Na+/K+-ATPase activity was also observed in the presence of dissolved alanine, presumably due to the requirement to remove the additional intracellular Na+ that was cotransported with alanine from sea water. The metabolic cost of maintaining the ionic balance was found to be high, with this process alone accounting for 40 % of the metabolic rate of sea urchin larvae (based on the measured fraction of total Na+/K+-ATPase that is physiologically active in larvae of S. purpuratus). Ontogenetic changes in pump activity and environmentally induced regulation of reserve Na+/K+-ATPase activity are important factors that determine a major proportion of the metabolic costs of sea urchin development.


Development ◽  
1989 ◽  
Vol 106 (2) ◽  
pp. 355-365 ◽  
Author(s):  
G.M. Wessel ◽  
W. Zhang ◽  
C.R. Tomlinson ◽  
W.J. Lennarz ◽  
W.H. Klein

The influence of the extracellular matrix (ECM) on differential gene expression during sea urchin development was explored using cell-type-specific cDNA probes. The ECM of three species of sea urchin, Strongylocentrotus purpuratus, Lytechinus variegatus and Lytechinus pictus, was disrupted with the lathrytic agent beta-aminopropionitrile (BAPN), which inhibits collagen deposition in the ECM and arrests gastrulation (Wessel & McClay, Devl Biol. 121: 149, 1987). The levels of several mRNAs (Spec 1, Spec 2, CyIIa actin, CyIIIa actin and collagen in S. purpuratus, and metallothionine, ubiquitin and LpS3 in L. pictus and L. variegatus) were compared in BAPN-treated and control embryos. These mRNAs accumulated normally during BAPN treatment, even though the embryos did not gastrulate. To determine if the expression of any gene product is sensitive to ECM disruption, a differential cDNA screen compared poly (A+) RNA from BAPN-arrested and control embryos in Lytechinus. A cDNA clone was isolated from this screen that represented a 2.1 kb mRNA that did not accumulate during BAPN treatment. Removal of BAPN resulted in the accumulation of this transcript coincident with the onset of gastrulation. This cDNA clone encodes a L. variegatus homologue of LpS1, recently demonstrated to be an ancestral homologue of the aboral ectoderm-specific Spec 1-Spec 2 gene family in S. purpuratus. Nuclear run-on assays in L. pictus suggested that transcriptional activity of LpS1 was selectively inhibited by BAPN treatment. Thus, although the accumulation of many gene products occurred independently of the embryonic collagenous matrix, the accumulation of LpS1 and LvS1 appeared to be mediated by the ECM.


Cell ◽  
1985 ◽  
Vol 41 (2) ◽  
pp. 639-648 ◽  
Author(s):  
D CARSON ◽  
M FARACHACH ◽  
D EARLES ◽  
G DECKER ◽  
W LENNARZ

1988 ◽  
Vol 252 (1) ◽  
pp. 257-262 ◽  
Author(s):  
I Crossley ◽  
K Swann ◽  
E Chambers ◽  
M Whitaker

We investigated the contribution of external calcium ions to inositol phosphate-induced exocytosis in sea urchin eggs. We show that: (a) inositol phosphates activate eggs of the sea urchin species Lytechinus pictus and Lytechinus variegatus independently of external calcium ions; (b) the magnitude and duration of the inositol phosphate induced calcium changes are independent of external calcium; (c) in calcium-free seawater, increasing the volume of inositol trisphosphate solution injected decreased the extent of egg activation; (d) eggs in calcium-free sea water are more easily damaged by microinjection; microinjection of larger volumes increased leakage from eggs pre-loaded with fluorescent dye. We conclude that inositol phosphates do not require external calcium ions to activate sea urchin eggs. This is entirely consistent with their role as internal messengers at fertilization. The increased damage caused to eggs in calcium-free seawater injected with large volumes may allow the EGTA present in the seawater to enter the egg and chelate any calcium released by the inositol phosphates. This may explain the discrepancy between this and earlier reports.


Author(s):  
Jennyfer Mora Cristancho ◽  
Sven Zea ◽  
Marisol Santos Acevedo ◽  
Federico Newmark Umbreit

The determination of antimitotic activity of organic extracts from marine organisms generates expectations on the isolation of substances with potential anticancer activity. The antimitotic activity of crude organic extracts from 15 marine sponges from the Colombian Caribbean coast were tested in vitro against embryos of the sea urchin Lytechinus variegatus. 80% of the species evaluated (Spirastrella coccinea, Myrmekioderma rea, Iotrochota imminuta, Halichondria sp., Petromica ciocalyptoides, Cinachyrella kuekenthali, Biemna cribaria, Oceanapia peltata, Xestospongia proxima, Oceanapia bartschi, Polymastia tenax y Dragmacidon reticulata) showed significant levels of inhibiting activity on the mitotic divisions at the first cellular phase of fertilized eggs. The extracts from Halichondria sp., P. ciocalyptoides and Xestospongia proxima disintegrate the cellular nuclei instantly. Extracts from Cribrochalina infundibulum showed an intermediate level of activity, while extracts from Desmapsamma anchorata and Myrmekioderma gyroderma showed no activity.


Zygote ◽  
2016 ◽  
Vol 24 (5) ◽  
pp. 775-782 ◽  
Author(s):  
Heghush Aleksanyan ◽  
Jing Liang ◽  
Stan Metzenberg ◽  
Steven B. Oppenheimer

SummaryThe sea urchin embryo is a United States National Institutes of Health (NIH) designated model system to study mechanisms that may be involved in human health and disease. In order to examine the importance of high-mannose glycans and polysaccharides in gastrulation, Lytechinus pictus embryos were incubated with Jack bean α-mannosidase (EC 3.2.1.24), an enzyme that cleaves terminal mannose residues that have α1–2-, α1–3-, or α1–6-glycosidic linkages. The enzyme treatment caused a variety of morphological deformations in living embryos, even with α-mannosidase activities as low as 0.06 U/ml. Additionally, formaldehyde-fixed, 48-hour-old L. pictus embryos were microdissected and it was demonstrated that the adhesion of the tip of the archenteron to the roof of the blastocoel in vitro is abrogated by treatment with α-mannosidase. These results suggest that terminal mannose residues are involved in the adhesion between the archenteron and blastocoel roof, perhaps through a lectin-like activity that is not sensitive to fixation.


1989 ◽  
Vol 9 (4) ◽  
pp. 1476-1487 ◽  
Author(s):  
L Tung ◽  
G F Morris ◽  
L N Yager ◽  
E S Weinberg

Early embryonic H4 (EH4) and H2B (EH2B) and late embryonic H4 (LH4) histone genes were transcribed in vitro in a nuclear extract from hatching blastula embryos of the sea urchin Strongylocentrotus purpuratus. The extract was prepared by slight modifications of the methods of Morris et al. (G. F. Morris, D. H. Price, and W. F. Marzluff, Proc. Natl. Acad. Sci. USA 83:3674-3678, 1986) that have been used to obtain a cell-free transcription system from embryos of the sea urchin Lytechinus variegatus. Achievement of maximum levels of transcription of the EH4 and LH4 genes required a 5- to 10-min preincubation of template with extract in the absence of ribonucleoside triphosphates. This preincubation allowed the formation of a stable complex which was preferentially transcribed compared with a second EH4 or LH4 template that was added 10 min later. Although the EH4 gene inhibited both EH4 and LH4 gene transcription in this assay and although the LH4 gene inhibited both EH4 and LH4 genes, neither of these genes inhibited transcription of the EH2B gene. Preincubation with the EH2B gene had no effect on the transcription of subsequently added EH4 or LH4 genes. Using this template commitment assay, we showed that the site of binding of at least one essential factor required for transcription of both EH4 and LH4 genes was located between positions -102 and -436 relative to the 5' terminus of the EH4 mRNA. Moreover, deletion of this region resulted in a reduction in EH4 gene transcription in vitro. The sea urchin gene-specific trans-acting factors, in the analysis of the cis-acting sequences with which they interact, and in biochemical studies on the formation of stable transcription complexes.


Development ◽  
1997 ◽  
Vol 124 (11) ◽  
pp. 2213-2223 ◽  
Author(s):  
C.Y. Logan ◽  
D.R. McClay

During sea urchin development, a tier-to-tier progression of cell signaling events is thought to segregate the early blastomeres to five different cell lineages by the 60-cell stage (E. H. Davidson, 1989, Development 105, 421–445). For example, the sixth equatorial cleavage produces two tiers of sister cells called ‘veg1′ and ‘veg2,’ which were projected by early studies to be allocated to the ectoderm and endoderm, respectively. Recent in vitro studies have proposed that the segregation of veg1 and veg2 cells to distinct fates involves signaling between the veg1 and veg2 tiers (O. Khaner and F. Wilt, 1991, Development 112, 881–890). However, fate-mapping studies on 60-cell stage embryos have not been performed with modern lineage tracers, and cell interactions between veg1 and veg2 cells have not been shown in vivo. Therefore, as an initial step towards examining how archenteron precursors are specified, a clonal analysis of veg1 and veg2 cells was performed using the lipophilic dye, DiI(C16), in the sea urchin species, Lytechinus variegatus. Both veg1 and veg2 descendants form archenteron tissues, revealing that the ectoderm and endoderm are not segregated at the sixth cleavage. Also, this division does not demarcate cell type boundaries within the endoderm, because both veg1 and veg2 descendants make an overlapping range of endodermal cell types. The allocation of veg1 cells to ectoderm and endoderm during cleavage is variable, as revealed by both the failure of veg1 descendants labeled at the eighth equatorial division to segregate predictably to either tissue and the large differences in the numbers of veg1 descendants that contribute to the ectoderm. Furthermore, DiI-labeled mesomeres of 32-cell stage embryos also contribute to the endoderm at a low frequency. These results show that the prospective archenteron is produced by a larger population of cleavage-stage blastomeres than believed previously. The segregation of veg1 cells to the ectoderm and endoderm occurs relatively late during development and is unpredictable, indicating that later cell position is more important than the early cleavage pattern in determining ectodermal and archenteron cell fates.


Sign in / Sign up

Export Citation Format

Share Document