Calcium and cell cycle control

Development ◽  
1990 ◽  
Vol 108 (4) ◽  
pp. 525-542 ◽  
Author(s):  
M. Whitaker ◽  
R. Patel

The cell division cycle of the early sea urchin embryo is basic. Nonetheless, it has control points in common with the yeast and mammalian cell cycles, at START, mitosis ENTRY and mitosis EXIT. Progression through each control point in sea urchins is triggered by transient increases in intracellular free calcium. The Cai transients control cell cycle progression by translational and post-translational regulation of the cell cycle control proteins pp34 and cyclin. The START Cai transient leads to phosphorylation of pp34 and cyclin synthesis. The mitosis ENTRY Cai transient triggers cyclin phosphorylation. The motosis EXIT transient causes destruction of phosphorylated cyclin. We compare cell cycle regulation by calcium in sea urchin embryos to cell cycle regulation in other eggs and oocytes and in mammalian cells.

2005 ◽  
Vol 169 (5) ◽  
pp. 707-710 ◽  
Author(s):  
Lynne M. Quarmby ◽  
Jeremy D.K. Parker

A recent convergence of data indicating a relationship between cilia and proliferative diseases, such as polycystic kidney disease, has revived the long-standing enigma of the reciprocal regulatory relationship between cilia and the cell cycle. Multiple signaling pathways are localized to cilia in mammalian cells, and some proteins have been shown to act both in the cilium and in cell cycle regulation. Work from the unicellular alga Chlamydomonas is providing novel insights as to how cilia and the cell cycle are coordinately regulated.


mBio ◽  
2021 ◽  
Author(s):  
Boris Bogdanow ◽  
Quang Vinh Phan ◽  
Lüder Wiebusch

Cytomegaloviruses (CMVs) are among the largest pathogenic viruses in mammals. To enable replication of their long double-stranded DNA genomes, CMVs induce profound changes in cell cycle regulation.


2021 ◽  
Author(s):  
Mudagandur Shashi Shekhar ◽  
Swathi Anandan ◽  
Vinaya Kumar Katneni ◽  
Ashok Kumar Jangam ◽  
Jesudhas Raymond Jani Angel ◽  
...  

Author(s):  
Fabin Dang ◽  
Li Nie ◽  
Wenyi Wei

Abstract Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide anticancer drug development.


2020 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Muzna Shah ◽  
Muhammad Fazal Hussain Qureshi ◽  
Danish Mohammad ◽  
Mahira Lakhani ◽  
Tabinda Urooj ◽  
...  

Cyclin-dependent kinases (CDKs) are the catalytic subunits or protein kinases characterized by separate subunit “cyclin” that are essential for their enzymatic activity. CDKs play important roles in the control of cell cycle progression, cell division, neuronal function, epigenetic regulation, metabolism, stem cell renewal and transcription. However, they can accomplish some of these tasks independently, without binding with cyclin protein or kinase activity. Thus, so far, twenty different CDKs and cyclins have been reported in mammalian cells. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). In this review, we summarizes that how CDKs are traditionally involve their latest revelations, their functional diversity beyond cell cycle regulation and their impact on development of disease in mammals.  


Genetics ◽  
1994 ◽  
Vol 138 (4) ◽  
pp. 1015-1024 ◽  
Author(s):  
L Breeden ◽  
G Mikesell

Abstract The G1 cyclins (CLNs) bind to and activate the CDC28 kinase during the G1 to S transition in Saccharomyces cerevisiae. Two G1 cyclins are regulated at the RNA level so that their RNAs peak at the G1/S boundary. In this report we show that the cell cycle regulation of CLN1 and CLN2 is partially determined by the restricted expression of SW14, a known trans-activator of SCB elements. When SWI4 is constitutively expressed or deleted, cell cycle regulation of CLN1/2 is reduced but not eliminated. In the absence of SwI6, another known regulator of both SCB and MCB elements, cell cycle regulation of the CLNs is also reduced, and the Start-dependence of HO transcription is eliminated. This indicates that SwI6 also plays an important role in the normal cell cycle regulation of all three promoters. When both SwI6 activity and the transcriptional regulation of SW14 are eliminated, cell cycle regulation is further reduced, indicating that these are two independent pathways of regulation. However, a twofold fluctuation in transcript levels still persists under these conditions. This reveals a third source of cell cycle control, which could affect SwI4 activity post-transcriptionally, or reflect the existence of another unidentified regulator of these promoters.


Sign in / Sign up

Export Citation Format

Share Document