In situ analysis of fetal, prepuberal and adult XX—XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 265-268 ◽  
Author(s):  
S.J. Palmer ◽  
P.S. Burgoyne

The testes of fetal, prepuberal and adult XX—XY chimaeras were examined using in situ hybridisation to identify the beta-globin transgenic marker contained in one component of each chimaera. This enabled the proportion of XX and XY cells contributing to the major cell lineages of the testis to be estimated from sectioned and air-dried material. A few XX Sertoli cells were found in all three age groups, but the XX contribution was always much lower than in other somatic cell types. Significantly, in fetal XX—XY testes, Sertoli cells were the only cell type to show a bias in favour of the XY component. This strengthens the view that Tdy acts solely in the lineage that gives rise to Sertoli cells. However, the finding of some fetal XX Sertoli cells means that one of the steps in the Tdy-initiated process of Sertoli cell determination is capable of locally recruiting XX cells.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1017-1019 ◽  
Author(s):  
S.J. Palmer ◽  
P.S. Burgoyne

XO/XY and XO/XY/XYY mosaic hermaphrodites were generated from crosses involving BALB/cWt males. The distribution of Y-bearing cells in the gonads of these mice was studied by in situ hybridisation using the Y-specific probe pY353B. XY cells were found to contribute to all cell lineages of the ovary including follicle cells. The proportion of XY follicle cells was not significantly different from the XY contribution to other gonadal or non-gonadal cell lineages. However, this proportion was consistently low, all the hermaphrodites having a low XY contribution to the animal as a whole. Because the XO- and Y-bearing cell lineages are developmentally balanced, the XY follicle cells cannot have formed as a result of a ‘mismatch’ in which the Y-directed testis determination process is pre-empted by an early acting programme of ovarian development. These results are discussed with respect to the hypothesis that Tdy acts in the supporting cell lineage, the lineage from which Sertoli cells and follicle cells are believed to be derived.



2015 ◽  
Vol 112 (13) ◽  
pp. 4003-4008 ◽  
Author(s):  
Lianjun Zhang ◽  
Min Chen ◽  
Qing Wen ◽  
Yaqiong Li ◽  
Yaqing Wang ◽  
...  

Sertoli and Leydig cells, the two major somatic cell types in the testis, have different morphologies and functions. Both are essential for gonad development and spermatogenesis. However, whether these cells are derived from the same progenitor cells and the mechanism regulating the differentiation between these two cell types during gonad development remains unclear. A previous study showed that overactivation of Ctnnb1 (cadherin-associated protein, beta 1) in Sertoli cells resulted in Sertoli cell tumors. Surprisingly, in the present study, we found that simultaneous deletion of Wilms’ Tumor Gene 1 (Wt1) and overactivation of Ctnnb1 in Sertoli cells led to Leydig cell-like tumor development. Lineage tracing experiments revealed that the Leydig-like tumor cells were derived from Sertoli cells. Further studies confirmed that Wt1 is required for the maintenance of the Sertoli cell lineage and that deletion of Wt1 resulted in the reprogramming of Sertoli cells to Leydig cells. Consistent with this interpretation, overexpression of Wt1 in Leydig cells led to the up-regulation of Sertoli cell-specific gene expression and the down-regulation of steroidogenic gene expression. These results demonstrate that the distinction between Sertoli cells and Leydig cells is regulated by Wt1, implying that these two cell types most likely originate from the same progenitor cells. This study thus provides a novel concept for somatic cell fate determination in testis development that may also represent an etiology of male infertility in human patients.



1996 ◽  
Vol 109 (4) ◽  
pp. 773-776 ◽  
Author(s):  
A.C. Chandley ◽  
R.M. Speed ◽  
A.R. Leitch

Using whole chromosome painting probes for human chromosomes 3,7,8,13,17 and 21 and X and the probe pHY2.1 for the Y chromosome coupled with fluorescent in situ hybridization (FISH) analysis, the distribution of chromosomes is reported in nuclei of Sertoli cells of the adult testis and in stimulated blood lymphocytes. The distribution of chromosomes in the two cell types is significantly different. A strong tendency for each pair of homologues to pair is inferred from the observation of only a single detectable signal in the majority of Sertoli cell nuclei. The sex chromosomes, by contrast, give two clearly separated signals. Interphase nuclei in dividing blood lymphocytes, analysed as controls, also show mainly two separated signals for all non-acrocentric autosomal pairs, but acrocentric pairs no. 13 and 21 show some tendency to associate, probably reflecting satellite association.



1997 ◽  
Vol 132 (1-2) ◽  
pp. 127-136 ◽  
Author(s):  
Cristina Esteban ◽  
Anne Gérard ◽  
Sara Larrib ◽  
Núria Torán ◽  
Hubert Gérard ◽  
...  




2019 ◽  
Author(s):  
Philip R. Nicovich ◽  
Michael J. Taormina ◽  
Christopher A. Baker ◽  
Thuc Nghi Nguyen ◽  
Elliot R. Thomsen ◽  
...  

AbstractDefining a complete set of cell types within the cortex requires reconciling disparate results achieved through diverging methodologies. To address this correspondence problem, multiple methodologies must be applied to the same cells across multiple single-cell experiments. Here we present a new approach applying spatial transcriptomics using multiplexed fluorescencein situhybridization, (mFISH) to brain tissue previously interrogated through two photon optogenetic mapping of synaptic connectivity. This approach can resolve the anatomical, transcriptomic, connectomic, electrophysiological, and morphological characteristics of single cells within the mouse cortex.



2019 ◽  
Author(s):  
Jeongbin Park ◽  
Wonyl Choi ◽  
Sebastian Tiesmeyer ◽  
Brian Long ◽  
Lars E. Borm ◽  
...  

AbstractMultiplexed fluorescence in situ hybridization techniques have enabled cell-type identification, linking transcriptional heterogeneity with spatial heterogeneity of cells. However, inaccurate cell segmentation reduces the efficacy of cell-type identification and tissue characterization. Here, we present a novel method called Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation (SSAM), a robust cell segmentation-free computational framework for identifying cell-types and tissue domains in 2D and 3D. SSAM is applicable to a variety of in situ transcriptomics techniques and capable of integrating prior knowledge of cell types. We apply SSAM to three mouse brain tissue images: the somatosensory cortex imaged by osmFISH, the hypothalamic preoptic region by MERFISH, and the visual cortex by multiplexed smFISH. We found that SSAM detects regions occupied by known cell types that were previously missed and discovers new cell types.



2018 ◽  
Author(s):  
Ken Jean-Baptiste ◽  
José L. McFaline-Figueroa ◽  
Cristina M. Alexandre ◽  
Michael W. Dorrity ◽  
Lauren Saunders ◽  
...  

ABSTRACTSingle-cell RNA-seq can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach toA. thalianaroot cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single-cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single-cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.



2005 ◽  
Vol 17 (9) ◽  
pp. 84
Author(s):  
M. Sarraj ◽  
P. J. McClive ◽  
K. L. Loveland ◽  
A. H. Sinclair

We present a detailed study on the expression pattern of Wsb2 in the mouse foetal and adult gonad. Wsb2 expression was analysed during mouse embryogenesis by whole-mount, section in situ hybridisation and immunohistochemistry. Wsb2 was found to be expressed in the developing mouse gonads from 11.5 dpc to 16.5 dpc. Expression is initially equal in both sexes from 10.5 dpc until 12.0 dpc, then it persists in the male gonad. Wsb2 expression was confined to the cords in both Sertoli cell and germ cells. Other sites of Wsb2 embryonic expression were the somites, dorsal root ganglia and the lateral mantle layer of the neural tube. mRNA encoding Wsb2 and Wsb2 protein has been detected in the newborn testis in both gonocytes and Sertoli cells. Wsb2 mRNA in the adult mouse testis was observed in Sertoli cells, spermatogonia, spermatocytes and the corresponding Wsb2 protein expression was in pachytene spermatocytes, round and elongated spermatids, Sertoli cells and Leydig cells. The differential expression of Wsb2 in male versus female embryonic gonads suggests it may play a role in mammalian sex determination during embryonic development and its expression in the first wave of spermatogenesis and in the adult suggests a later role in spermatogenesis.



Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 42 ◽  
Author(s):  
Luwanika Mlera ◽  
Marshall E. Bloom

Background: Zika virus is a mosquito-borne flavivirus responsible for recent outbreaks of epidemic proportions in Latin America. Sexual transmission of the virus has been reported in 13 countries and may be an important route of infection. Sexual transmission of ZIKV has mostly been male-to-female, and persistence of viral RNA in semen for up to 370 days has been recorded. The susceptibility to ZIKV of different testicular cell types merits investigation. Methods: We infected primary Sertoli cells, a primary testicular fibroblast Hs1.Tes, and 2 seminoma cell lines SEM-1 and TCam-2 cells with ZIKV Paraiba and the prototype ZIKV MR766 to evaluate their susceptibility and to look for viral persistence. A human neuroblastoma cell line SK-N-SH served as a control cell type. Results: Both virus strains were able to replicate in all cell lines tested, but ZIKV MR766 attained higher titers. Initiation of viral persistence by ZIKV Paraiba was observed in Sertoli, Hs1.Tes, SEM-1 and TCam-2 cells, but was of limited duration due to delayed cell death. ZIKV MR766 persisted only in Hs1.Tes and Sertoli cells, and persistence was also limited. In contrast, SK-N-SH cells were killed by both ZIKV MR766 and ZIKV Paraiba and persistence could not be established in these cells. Conclusions: ZIKV prototype strain MR766 and the clinically relevant Paraiba strain replicated in several testicular cell types. Persistence of ZIKV MR766 was only observed in Hs1.Tes and Sertoli cells, but the persistence did not last more than 3 or 4 passages, respectively. ZIKV Paraiba persisted in TCam-2, Hs1.Tes, Sertoli and SEM-1 cells for up to 5 passages, depending on cell type. TCam-2 cells appeared to clear persistent infection by ZIKV Paraiba.



Sign in / Sign up

Export Citation Format

Share Document