scholarly journals XY follicle cells in the ovaries of XO/XY and XO/XY/XYY mosaic mice

Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1017-1019 ◽  
Author(s):  
S.J. Palmer ◽  
P.S. Burgoyne

XO/XY and XO/XY/XYY mosaic hermaphrodites were generated from crosses involving BALB/cWt males. The distribution of Y-bearing cells in the gonads of these mice was studied by in situ hybridisation using the Y-specific probe pY353B. XY cells were found to contribute to all cell lineages of the ovary including follicle cells. The proportion of XY follicle cells was not significantly different from the XY contribution to other gonadal or non-gonadal cell lineages. However, this proportion was consistently low, all the hermaphrodites having a low XY contribution to the animal as a whole. Because the XO- and Y-bearing cell lineages are developmentally balanced, the XY follicle cells cannot have formed as a result of a ‘mismatch’ in which the Y-directed testis determination process is pre-empted by an early acting programme of ovarian development. These results are discussed with respect to the hypothesis that Tdy acts in the supporting cell lineage, the lineage from which Sertoli cells and follicle cells are believed to be derived.

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 265-268 ◽  
Author(s):  
S.J. Palmer ◽  
P.S. Burgoyne

The testes of fetal, prepuberal and adult XX—XY chimaeras were examined using in situ hybridisation to identify the beta-globin transgenic marker contained in one component of each chimaera. This enabled the proportion of XX and XY cells contributing to the major cell lineages of the testis to be estimated from sectioned and air-dried material. A few XX Sertoli cells were found in all three age groups, but the XX contribution was always much lower than in other somatic cell types. Significantly, in fetal XX—XY testes, Sertoli cells were the only cell type to show a bias in favour of the XY component. This strengthens the view that Tdy acts solely in the lineage that gives rise to Sertoli cells. However, the finding of some fetal XX Sertoli cells means that one of the steps in the Tdy-initiated process of Sertoli cell determination is capable of locally recruiting XX cells.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Barbara Nicol ◽  
Sara A. Grimm ◽  
Frédéric Chalmel ◽  
Estelle Lecluze ◽  
Maëlle Pannetier ◽  
...  

Abstract Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.


2005 ◽  
Vol 17 (9) ◽  
pp. 84
Author(s):  
M. Sarraj ◽  
P. J. McClive ◽  
K. L. Loveland ◽  
A. H. Sinclair

We present a detailed study on the expression pattern of Wsb2 in the mouse foetal and adult gonad. Wsb2 expression was analysed during mouse embryogenesis by whole-mount, section in situ hybridisation and immunohistochemistry. Wsb2 was found to be expressed in the developing mouse gonads from 11.5 dpc to 16.5 dpc. Expression is initially equal in both sexes from 10.5 dpc until 12.0 dpc, then it persists in the male gonad. Wsb2 expression was confined to the cords in both Sertoli cell and germ cells. Other sites of Wsb2 embryonic expression were the somites, dorsal root ganglia and the lateral mantle layer of the neural tube. mRNA encoding Wsb2 and Wsb2 protein has been detected in the newborn testis in both gonocytes and Sertoli cells. Wsb2 mRNA in the adult mouse testis was observed in Sertoli cells, spermatogonia, spermatocytes and the corresponding Wsb2 protein expression was in pachytene spermatocytes, round and elongated spermatids, Sertoli cells and Leydig cells. The differential expression of Wsb2 in male versus female embryonic gonads suggests it may play a role in mammalian sex determination during embryonic development and its expression in the first wave of spermatogenesis and in the adult suggests a later role in spermatogenesis.


2011 ◽  
Vol 2 (6) ◽  
pp. 537-547 ◽  
Author(s):  
Francisco Barrionuevo ◽  
Miguel Burgos ◽  
Rafael Jiménez

AbstractIn the adult testis, Sertoli cells (SCs) are the epithelial supporting cells of the seminiferous tubules that provide germ cells (GCs) with the required nutrients and structural and regulatory support to complete spermatogenesis. SCs also form the blood-testis barrier, phagocytose apoptotic spermatocytes and cell debris derived from spermiogenesis, and produce and secrete numerous paracrine and endocrine signals involved in different regulatory processes. In addition to their essential functions in the adult testis, SCs play a pivotal role during testis development. They are the first cells to differentiate in the embryonic XY gonadal primordium and are involved in the regulation of testis-specific differentiation processes, such as prevention of GC entry into meiosis, Leydig and peritubular myoid cell differentiation, and regression of the Müllerian duct, the anlagen of the uterus, oviducts, and the upper part of the vagina. Expression of the Y-linked gene SRY in pre-SCs initiates a genetic cascade that leads to SC differentiation and subsequently to testis development. Since the identification of the SRY gene, many Sertoli-specific transcription factors and signals underlying the molecular mechanisms of early testis differentiation have been identified. Here, we review the state of the art of the molecular interactions that commit the supporting cell lineage of the gonadal primordium to differentiate as SCs and the subsequent Sertoli-specific signaling pathways involved in early testis differentiation.


Study of cell lineage in the mammalian embryo has relied heavily on the use of chimeras to follow the fate of genetically marked cells in later development. Such studies have often been limited by the types of genetic markers available; there are very few markers that allow analysis of the spatial distribution of individual cells at all stages of development. We have developed a marker system that is based on the identification of cells of Mus musculus origin in M. musculus-M. caroli chimeras by in situ DNA-DNA hybridization using a cloned probe to M. musculus satellite DNA. This provides the first ubiquitous in situ cell marker system for mammalian chimeras. We have recently refined the system by the use of biotin-labelled probes and detection of hybridization by streptavidin-peroxidase binding. This increases both the speed and the resolution of the assay. We have used the marker for cell lineage analysis in both embryonic and adult chimeras and results from analysis of the derivatives of early cell lineages in later development and study of coherent growth versus cell mixing in the postimplantation embryo are presented. The importance of understanding embryonic cell lineages as a prelude to molecular studies is emphasized.


Development ◽  
1992 ◽  
Vol 116 (3) ◽  
pp. 697-710 ◽  
Author(s):  
D. Nardelli-Haefliger ◽  
M. Shankland

The segmented tissues of the adult leech arise from a set of five, bilaterally paired embryonic stem cells via a stereotyped sequence of cell lineage. Individual segments exhibit unique patterns of cell differentiation, and previous studies have suggested that each stem cell lineage establishes at least some aspects of its own segmental specificity autonomously. In this paper, we describe a putative leech segment identity gene, Lox2, and examine its expression in the various stem cell lineages. Both sequence analysis and the segmental pattern of Lox2 expression suggest a specific homology to the fruitfly segment identity genes Ubx and abdA. In situ hybridization reveals a cellular accumulation of Lox2 RNA over a contiguous domain of 16 midbody segments (M6-M21), including postmitotic neurons, muscles and the differentiating genitalia. Lox2 transcripts were not detected at the stage when segment identities are first established, suggesting that Lox2 gene products may not be part of the initial specification process. Individual stem cell lineages were labeled by intracellular injection of fluorescent tracers, and single cell colocalization of lineage tracer and hybridization reaction product revealed expression of Lox2 RNA in the progeny of four different stem cells. The segmental domain of Lox2 RNA was very similar in the various stem cell lineages, despite the fact that some stem cells generate one founder cell/segment, whereas other stem cells generate two founder cells/segment.


2019 ◽  
Author(s):  
Barbara Nicol ◽  
Sara A. Grimm ◽  
Frederic Chalmel ◽  
Estelle Lecluze ◽  
Maëlle Pannetier ◽  
...  

AbstractSex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian granulosa cells or testicular Sertoli cells. This process of fate specification hinges on a balance of transcriptional control. We discovered that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity, and combined loss of RUNX1 and FOXL2 results in masculinization of the fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target a common set of genes. These findings identify RUNX1, with an ovary-biased pattern conserved across species, as a novel regulator in securing the identity of ovarian supporting cells and the ovary.


The phenotypic sex of an individual mammal is determined by the sex of its gonads, i.e. testes or ovaries. This in turn is determined by the presence or absence of a small region of the Y chromosome, located near the X-Y pairing region in man and on the short arm of the Y chromosome in the mouse. The testis-determining region of the Y appears to exert its primary effect by directing the supporting-cell lineage of the gonad to differentiate as Sertoli cells, acting at least in part cell-autonomously. The phenotypic sex of a germ cell, i.e. whether it undergoes spermatogenesis or oogenesis, is determined at least in the mouse by whether or not it enters meiotic prophase before birth. This depends not on its own sex chromosome constitution, but on its cellular environment. A germ cell in or near normal testis cords (made up mainly of Sertoli cells) is inhibited from entering meiosis until after birth; one that escapes this inhibition will develop into an oocyte even if it is in a male animal and is itself XY in chromosome constitution.


Sign in / Sign up

Export Citation Format

Share Document