Origins of the insect enteric nervous system: differentiation of the enteric ganglia from a neurogenic epithelium

Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1115-1132 ◽  
Author(s):  
P.F. Copenhaver ◽  
P.H. Taghert

The enteric nervous system (ENS) of the moth Manduca sexta is organized into two distinct cellular domains: an anterior domain that includes several small ganglia on the surface of the foregut, and a more posterior domain consisting of a branching nerve plexus (the enteric plexus) that spans the foregut-midgut boundary. Previously, we showed that the neurons of the posterior domain, the enteric plexus, are generated from a large placode that invaginates from the caudal lip of the foregut; subsequently, the cells become distributed throughout the enteric plexus by a sequence of active migration. We now demonstrate that the neurons of the anterior domain, the cells of the enteric ganglia, arise via a distinct developmental sequence. Shortly after the foregut has begun to form, three neurogenic zones differentiate within the foregut epithelium and give rise to chains of cells that emerge onto the foregut surface. The three zones are not sites of active mitosis, as indicated by the absence of labelling with a thymidine analogue and by clonal analyses using intracellularly injected dyes. Rather, the zones serve as loci through which epithelial cells are recruited into a sequence of delamination and neuronal differentiation. As they emerge from the epithelium, the cells briefly become mitotically active, each cell dividing once or twice. In this manner, they resemble the midline precursor class of neural progenitors in the insect central nervous system more than neuroblast stem cells. The progeny of these zone-derived precursors then gradually coalesce into the ganglia and nerves of the anterior ENS. Although this reorganization results in some variability in the precise configuration of neurons within the ganglia, the overall morphology of the ganglia is highly stereotyped, consisting of cortical layers of cells that surround a ventral neuropil. In addition, a number of the neurons within the frontal and hypocerebral ganglia express identifiable phenotypes in a manner that is similar to many cells of the insect central nervous system. These observations indicate that the differentiation of the enteric ganglia in Manduca involves an unusual combination of features seen during the formation of other regions of the nervous system and, as such, constitutes a distinct program of neurogenesis.

Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 59-74 ◽  
Author(s):  
P. F. Copenhaver

The enteric nervous system (ENS) of the moth, Manduca sexta, consists of two primary cellular domains and their associated nerves. The neurons of the anterior domain occupy two small peripheral ganglia (the frontal and hypocerebral ganglia), while a second population of neurons occupies a branching nerve plexus (the enteric plexus) that spans the foregut-midgut boundary. Previously, we have shown these two regions arise by separate programs of neurogenesis: cells that form the anterior enteric ganglia are generated from three discrete proliferative zones that differentiate within the foregut epithelium. In contrast, the cells of the enteric plexus (the EP cells) emerge from a neurogenic placode within the posterior lip of the foregut. Both sets of neurons subsequently undergo an extended period of migration and reorganization to achieve their mature distributions. We now show that prior to the completion of neurogenesis, an additional class of precursor cells is generated from the three proliferative zones of the foregut. Coincident with the onset of neuronal migration, this precursor class enters a phase of enhanced mitotic activity, giving rise to a population of cells that continue to divide as the ENS matures. Using clonal analyses of individual precursors, we demonstrate that the progeny of these cells become distributed along the same pathways taken by the migratory neurons; subsequently, they contribute to an ensheathing layer around the branches of the enteric plexus and the enteric ganglia. We conclude that this additional precursor class, which shares a common developmental origin with the enteric neurons, gives rise to a distinct population of peripheral glial cells. Moreover, the distribution of enteric glial cells is achieved by their migration and differentiation along the same pathways that are formed during the preceding phases of neuronal migration.


1971 ◽  
Vol 61 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Ian McLure

Fifth-instar nymphs of Rhodnius prolixus Stålwere exposed to the vapours of 11 volatile drugs: acetone, bromobenzene, bromoform, carbon tetrachloride, chloral hydrate, chloroform, dioxane, ethanol, ethyl ether, isopropanol and paraldehyde. Bromobenzene, bromoform, carbon tetrachloride, chloroform and ether induced reversible anaesthesia. For each of these five, the insects exhibited a different andspecific pattern of motor responses before becoming totally immobile; these responses are described. The responses to carbon tetrachloride are similar to the normal feeding responses of this insect. The other six drugs did not induce anaesthesia, but instead, a commonand stereotyped pattern of cleaning responses, suggesting irritation of the sensory organs. It is proposed that the agent-specific responses to the anaesthesiainducing drugs are due to their differential action upon specific portions of the insect central nervous system.


Development ◽  
2002 ◽  
Vol 129 (12) ◽  
pp. 2785-2796 ◽  
Author(s):  
Alan J. Burns ◽  
Jean-Marie M. Delalande ◽  
Nicole M. Le Douarin

The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.


1990 ◽  
Vol 95 (4) ◽  
pp. 599-604
Author(s):  
P.J. Smith ◽  
E.A. Howes ◽  
J.E. Treherne

Uptake of the thymidine analogue 5-bromo-2-deoxyuridine into non-neuronal cells of the insect central nervous system has been examined following a controlled lesioning of the glial elements. The pattern of BUdR labelling along the penultimate abdominal connective was examined over a period of 17 days. Cell proliferation occurred in and immediately around the site of damage in both perineurial and subperineurial glial cells but at different times post-lesion for the two regions. Proliferation in the perineurial zone was maximal at 6–8 days post-lesion but continued for at least 17 days. Subperineurial proliferation was less dramatic and peaked between days 8–11 post-lesion. In both areas division appears to be confined to the reactive glial cells. These results are discussed in the context of past research on this system, particularly with regard to the restoration of the blood-brain barrier.


1995 ◽  
Vol 198 (6) ◽  
pp. 1307-1311
Author(s):  
J J Milde ◽  
R Ziegler ◽  
M Wallstein

A simple preparation designed to screen and compare the central action of putative neuroactive agents in the moth Manduca sexta is described. This approach combines microinjections into the central nervous system with myograms recorded from a pair of spontaneously active mesothoracic muscles. Pressure injection of either octopamine or Manduca adipokinetic hormone (M-AKH) into the mesothoracic neuropile increases the monitored motor activity. Under the conditions used, the excitatory effects of M-AKH exceed those of the potent neuromodulator octopamine. This suggests that M-AKH plays a role in the central nervous system in addition to its known metabolic functions and supports recent evidence that neuropeptides in insects can be multifunctional.


Sign in / Sign up

Export Citation Format

Share Document