Steroid Regulation of Cell Populations in the Insect Central Nervous System

Author(s):  
Susan Fahrbach ◽  
Kathleen Klukas ◽  
Karen Mesce
1996 ◽  
Vol 109 (7) ◽  
pp. 1749-1757 ◽  
Author(s):  
N. Soussi-Yanicostas ◽  
J.P. Hardelin ◽  
M.M. Arroyo-Jimenez ◽  
O. Ardouin ◽  
R. Legouis ◽  
...  

The KAL gene is responsible for the X-chromosome linked form of Kallmann's syndrome in humans. Upon transfection of CHO cells with a human KAL cDNA, the corresponding encoded protein, KALc, was produced. This protein is N-glycosylated, secreted in the cell culture medium, and is localized at the cell surface. Several lines of evidence indicate that heparan-sulfate chains of proteoglycan(s) are involved in the binding of KALc to the cell membrane. Polyclonal and monoclonal antibodies to the purified KALc were generated. They allowed us to detect and characterize the protein encoded by the KAL gene in the chicken central nervous system at late stages of embryonic development. This protein is synthesized by definite neuronal cell populations including Purkinje cells in the cerebellum, mitral cells in the olfactory bulbs and several subpopulations in the optic tectum and the striatum. The protein, with an approximate molecular mass of 100 kDa, was named anosmin-1 in reference to the deficiency of the sense of smell which characterizes the human disease. Anosmin-1 is likely to be an extracellular matrix component. Since heparin treatment of cell membrane fractions from cerebellum and tectum resulted in the release of the protein, we suggest that one or several heparan-sulfate proteoglycans are involved in the binding of anosmin-1 to the membranes in vivo.


1971 ◽  
Vol 61 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Ian McLure

Fifth-instar nymphs of Rhodnius prolixus Stålwere exposed to the vapours of 11 volatile drugs: acetone, bromobenzene, bromoform, carbon tetrachloride, chloral hydrate, chloroform, dioxane, ethanol, ethyl ether, isopropanol and paraldehyde. Bromobenzene, bromoform, carbon tetrachloride, chloroform and ether induced reversible anaesthesia. For each of these five, the insects exhibited a different andspecific pattern of motor responses before becoming totally immobile; these responses are described. The responses to carbon tetrachloride are similar to the normal feeding responses of this insect. The other six drugs did not induce anaesthesia, but instead, a commonand stereotyped pattern of cleaning responses, suggesting irritation of the sensory organs. It is proposed that the agent-specific responses to the anaesthesiainducing drugs are due to their differential action upon specific portions of the insect central nervous system.


1990 ◽  
Vol 95 (4) ◽  
pp. 599-604
Author(s):  
P.J. Smith ◽  
E.A. Howes ◽  
J.E. Treherne

Uptake of the thymidine analogue 5-bromo-2-deoxyuridine into non-neuronal cells of the insect central nervous system has been examined following a controlled lesioning of the glial elements. The pattern of BUdR labelling along the penultimate abdominal connective was examined over a period of 17 days. Cell proliferation occurred in and immediately around the site of damage in both perineurial and subperineurial glial cells but at different times post-lesion for the two regions. Proliferation in the perineurial zone was maximal at 6–8 days post-lesion but continued for at least 17 days. Subperineurial proliferation was less dramatic and peaked between days 8–11 post-lesion. In both areas division appears to be confined to the reactive glial cells. These results are discussed in the context of past research on this system, particularly with regard to the restoration of the blood-brain barrier.


1995 ◽  
Vol 198 (6) ◽  
pp. 1307-1311
Author(s):  
J J Milde ◽  
R Ziegler ◽  
M Wallstein

A simple preparation designed to screen and compare the central action of putative neuroactive agents in the moth Manduca sexta is described. This approach combines microinjections into the central nervous system with myograms recorded from a pair of spontaneously active mesothoracic muscles. Pressure injection of either octopamine or Manduca adipokinetic hormone (M-AKH) into the mesothoracic neuropile increases the monitored motor activity. Under the conditions used, the excitatory effects of M-AKH exceed those of the potent neuromodulator octopamine. This suggests that M-AKH plays a role in the central nervous system in addition to its known metabolic functions and supports recent evidence that neuropeptides in insects can be multifunctional.


2014 ◽  
Vol 6 (9) ◽  
pp. 855-861 ◽  
Author(s):  
A. R. Fernandes ◽  
D. M. Chari

We describe a multicellular neural model to study nanoparticle uptake and gene delivery, using stem cell derived cell populations.


2005 ◽  
Vol 19 (3) ◽  
pp. 1-6 ◽  
Author(s):  
Nicholas C. Bambakidis ◽  
Nicholas Theodore ◽  
Peter Nakaji ◽  
Adrian Harvey ◽  
Volker K. H. Sonntag ◽  
...  

The continuous regeneration of glial cells arising from endogenous stem cell populations in the central nervous system (CNS) occurs throughout life in mammals. In the ongoing research to apply stem cell therapy to neurological diseases, the capacity to harness the multipotential ability of endogenous stem cell populations has become apparent. Such cell populations proliferate in response to a variety of injury states in the CNS, but in the absence of a supportive microenvironment they contribute little to any significant behavioral recovery. In the authors' laboratory and elsewhere, recent research on the regenerative potential of these stem cells in disease states such as spinal cord injury has demonstrated that the cells' proliferative potential may be greatly upregulated in response to appropriate growth signals and exogenously applied trophic factors. Further understanding of the potential of such multipotent cells and the mechanisms responsible for creating a favorable microenvironment for them may lead to additional therapeutic alternatives in the setting of neurological diseases. These therapies would require no exogenous stem cell sources and thus would avoid the ethical and moral considerations regarding their use. In this review the authors provide a brief overview of the enhancement of endogenous stem cell proliferation following neurological insult.


Sign in / Sign up

Export Citation Format

Share Document