Adipokinetic hormone stimulates neurones in the insect central nervous system.

1995 ◽  
Vol 198 (6) ◽  
pp. 1307-1311
Author(s):  
J J Milde ◽  
R Ziegler ◽  
M Wallstein

A simple preparation designed to screen and compare the central action of putative neuroactive agents in the moth Manduca sexta is described. This approach combines microinjections into the central nervous system with myograms recorded from a pair of spontaneously active mesothoracic muscles. Pressure injection of either octopamine or Manduca adipokinetic hormone (M-AKH) into the mesothoracic neuropile increases the monitored motor activity. Under the conditions used, the excitatory effects of M-AKH exceed those of the potent neuromodulator octopamine. This suggests that M-AKH plays a role in the central nervous system in addition to its known metabolic functions and supports recent evidence that neuropeptides in insects can be multifunctional.

1989 ◽  
Vol 147 (1) ◽  
pp. 457-470 ◽  
Author(s):  
JAMES W. TRUMAN ◽  
PHILIP F. COPENHAVER

Larval and pupal ecdyses of the moth Manduca sexta are triggered by eclosion hormone (EH) released from the ventral nervous system. The major store of EH activity in the latter resides in the proctodeal nerves that extend along the larval hindgut. At pupal ecdysis, the proctodeal nerves show a 90% depletion of stored activity, suggesting that they are the major release site for the circulating EH that causes ecdysis. Surgical experiments involving the transection of the nerve cord or removal of parts of the brain showed that the proctodeal nerve activity originates from the brain. Retrograde and anterograde cobalt fills and immunocytochemistry using antibodies against EH revealed two pairs of neurons that reside in the ventromedial region of the brain and whose axons travel ipsilaterally along the length of the central nervous system (CNS) and project into the proctodeal nerve, where they show varicose release sites. These neurons constitute a novel neuroendocrine pathway in insects which appears to be dedicated solely to the release of EH.


2000 ◽  
Vol 203 (8) ◽  
pp. 1329-1340 ◽  
Author(s):  
D. Zitnan ◽  
M.E. Adams

Insects shed their old cuticle by performing the ecdysis behavioural sequence. To activate each subunit of this set of programmed behaviours in Manduca sexta, specific central ganglia are targeted by pre-ecdysis-triggering (PETH) and ecdysis-triggering (ETH) hormones secreted from Inka cells. PETH and ETH act on each abdominal ganglion to initiate, within a few minutes, pre-ecdysis I and II, respectively. Shortly thereafter, ETH targets the tritocerebrum and suboesophageal ganglion to activate the ecdysis neural network in abdominal ganglia through the elevation of cyclic GMP (cGMP) levels. However, the onset of ecdysis behaviour is delayed by inhibitory factor(s) from the cephalic and thoracic ganglia. The switch from pre-ecdysis to ecdysis is controlled by an independent clock in each abdominal ganglion and is considerably accelerated after removal of the head and thorax. Eclosion hormone (EH) appears to be one of the central signals inducing elevation of cGMP levels and ecdysis, but these actions are quite variable and usually restricted to anterior ganglia. EH treatment of desheathed ganglia also elicits strong production of cGMP in intact ganglia, suggesting that this induction occurs via the release of additional downstream factors. Our data suggest that the initiation of pre-ecdysis and the transition to ecdysis are regulated by stimulatory and inhibitory factors released within the central nervous system after the initial actions of PETH and ETH.


Science ◽  
1988 ◽  
Vol 240 (4850) ◽  
pp. 321-324 ◽  
Author(s):  
CD Breder ◽  
CA Dinarello ◽  
CB Saper

Interleukin-1 (IL-1) is a cytokine that mediates the acute phase reaction. Many of the actions of IL-1 involve direct effects on the central nervous system. However, IL-1 has not previously been identified as an intrinsic component within the brain, except in glial cells. An antiserum directed against human IL-1 beta was used to stain the human brain immunohistochemically for IL-1 beta-like immunoreactive neural elements. IL-1 beta-immunoreactive fibers were found innervating the key endocrine and autonomic cell groups that control the central components of the acute phase reaction. These results indicate that IL-1 may be an intrinsic neuromodulator in central nervous system pathways that mediate various metabolic functions of the acute phase reaction, including the body temperature changes that produce the febrile response.


Sign in / Sign up

Export Citation Format

Share Document