X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene

Development ◽  
1994 ◽  
Vol 120 (10) ◽  
pp. 2925-2932 ◽  
Author(s):  
P.P. Tam ◽  
S.X. Zhou ◽  
S.S. Tan

We have determined the timing of the inactivation and reactivation of the X chromosome in the mouse primordial germ cells (PGCs) by monitoring the expression of an X-linked HMG-lacZ reporter gene. PGCs were identified by their distinct alkaline phosphatase activity and they were first localised in the primitive streak and allantoic bud of the 7.5-day gastrulating embryo. Although inactivation of the transgene was found in some PGCs at these sites, at least 85% of the population were still expressing the lacZ gene. This suggests that, although X-inactivation has commenced during gastrulation, the majority of PGCs still possess two active X chromosomes. Transgene activity remained unchanged during the relocation of PGCs to the hindgut endoderm, but decreased abruptly when PGCs left the hindgut and migrated through the mesentery. X-inactivation was completed during the migration of PGCs, but not simultaneously for the whole population. The first wave of PGCs entering the genital ridge at 9.5 days did not immediately re-activate the silent transgene until about 24 hours later. Re-activation of the transgene took place in over 80% of PGCs entering the genital ridge at 10.5-13.5 days p.c., preceding the entry into meiosis. About 90% of the meiotic germ cells in the 14.5-15.5 day fetal ovary expressed the transgene. Similar profiles of transgene activity were observed in PGCs of embryos that have inherited the lacZ transgene from different parents, showing unequivocally that X-inactivation in the germ cell lineage is not related to parental legacy.(ABSTRACT TRUNCATED AT 250 WORDS)

Biology Open ◽  
2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Yoshikazu Haramoto ◽  
Mino Sakata ◽  
Shin Kobayashi

ABSTRACT X chromosome inactivation (XCI), determined during development, remains stable after embryonic cell divisions. However, primordial germ cells (PGCs) are exceptions in that XCI is reprogrammed and inactivated X chromosomes are reactivated. Although interactions between PGCs and somatic cells are thought to be important for PGC development, little is known about them. Here, we performed imaging of X chromosome reactivation (XCR) using the ‘Momiji’ mouse system, which can monitor the X chromosome's inactive and active states using two color fluorescence reporter genes, and investigated whether interactions would affect XCR in PGCs. Based on their expression levels, we found that XCR of the Pgk1 locus began at embryonic day (E)10.5 and was almost complete by E13.5. During this period, PGCs became distributed uniformly in the genital ridge, proliferated, and formed clusters; XCR progressed accordingly. In addition, XCR of the Pgk1 locus preceded that of the Hprt locus, indicating that the timing of epigenetic memory erasure varied according to the locus of each of these X-linked genes. Our results indicate that XCR proceeds along with the proliferation of PGCs clustered within the genital ridge. This article has an associated First Person interview with the first author of the paper.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoma Ota ◽  
Makoto Hayashi ◽  
Shumpei Morita ◽  
Hiroki Miura ◽  
Satoru Kobayashi

AbstractDosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold. By contrast, it remains unclear whether dosage compensation occurs in the germline. To address this issue, we performed transcriptome analysis of male and female primordial germ cells (PGCs). We found that the expression levels of X-linked genes were approximately twofold higher in female PGCs than in male PGCs. Acetylation of lysine residue 16 on histone H4 (H4K16ac), which is catalyzed by the MSL complex, was undetectable in these cells. In male PGCs, hyperactivation of X-linked genes and H4K16ac were induced by overexpression of the essential components of the MSL complex, which were expressed at very low levels in PGCs. Together, these findings indicate that failure of MSL complex formation results in the absence of X-chromosome dosage compensation in male PGCs.


Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 251-258
Author(s):  
Andy McMahon ◽  
Mandy Fosten ◽  
Marilyn Monk

The pattern of expression of the two X chromosomes was investigated in pre-meiotic germ cells from 12½-day-old female embryos heterozygous for the variant electrophoretic forms of the X-linked enzyme phosphoglycerate kinase (PGK-1). If such germ cells carry the preferentially active Searle's translocated X chromosome (Lyon, Searle, Ford & Ohno, 1964), then only the Pgk-1 allele on this chromosome is expressed. This confirms Johnston's evidence (1979,1981) that Pgk-1 expression reflects a single active X chromosome at this time. Extracts of 12½-day germ cells from heterozygous females carrying two normal X chromosomes show both the A and the B forms of PGK; since only one X chromosome in each cell is active, different alleles must be expressed in different cells, suggesting that X-chromosome inactivation is normally random in the germ line. This result makes it unlikely that germ cells are derived from the yolk-sac endoderm where the paternally derived X chromosome is preferentially inactivated. In their pattern of X-chromosome inactivation, germ cells evidently resemble other tissues derived from the epiblast.


Mammals are thought to have a type of dosage compensation not so far known in any other animal group: however many X chromosomes are present, only one remains genetically active in somatic cells. Considerable evidence for this idea exists, in spite of criticism; the greatest difficulty is presented by the abnormalities in human individuals with X chromosome aberrations. Possible explanations for these abnormalities include: wrong X chromosome dosage in early development before X inactivation, reversal of inactivation, partial inactivation of both X chromosomes, activity of the X while in the condensed inactive state, and the presence of a homologous non-inactivated region of the human X and Y. In female germ cells X inactivation apparently does not occur, but the situation in male germ cells is less clear. The Y chromosome is probably also inactive in somatic cells of adults, but again its function in germ cells is not yet clear. Some species have a presumed doubly inactive X chromosome region, as well as the singly active one. The origins and functions of this region are unknown; it may have a role in female germ cells.


Reproduction ◽  
2020 ◽  
Author(s):  
Delia Alba Soto ◽  
Pablo Juan Ross

The germ cell lineage ensures the creation of new individuals and perpetuates the genetic information across generations. Primordial germ cells are pioneers of gametes and exist transiently during development until they differentiate into oogonia in females, or spermatogonia in males. Little is known about the molecular characteristics of primordial germ cells in cattle. By performing single-cell RNA-sequencing, quantitative real-time PCR, and immunofluorescence analyses of fetal gonads between 40 and 90 days of fetal age, we evaluated the molecular signatures of bovine germ cells at the initial stages of gonadal development. Our results indicate that at 50 days of fetal age, bovine primordial germ cells were in the early stages of development, expressing genes of early primordial germ cells, including transcriptional regulators of human germline specification (e.g. SOX17, TFAP2C, and PRDM1). Bovine and human primordial germ cells also share expression of KIT, EPCAM, ITGA6, and PDPN genes coding for membrane-bound proteins, and an asynchronous pattern of differentiation. Additionally, the expression of members of Notch, Nodal/Activin, and BMP signaling cascades in the bovine fetal ovary, suggests that these pathways are involved in the interaction between germ cells and their niche. Results of this study provide insights into the mechanisms involved in the development of bovine primordial germ cells and put in evidence similarities between the bovine and human germline.


2006 ◽  
Vol 18 (2) ◽  
pp. 181 ◽  
Author(s):  
M. Vejlsted ◽  
H. Offenberg ◽  
P. Maddox-Hyttel

In embryonic stem cell research, Oct-4 is one of the most widely used markers of pluripotency. Moreover, at least in the mouse, this marker is restricted to primordial germ cells (PGCs) after gastrulation. Vimentin is often used as a marker of mesoderm/mesenchyme in embryonic tissues and appears to localize to the same embryonic cells as Oct-4, at least in the bovine epiblast. The expression of neither of these markers has been completely addressed in the pig. Therefore, the purpose of the present study was to examine the expression of Oct-4 and vimentin in the porcine epiblast during differentiation and establishment of the three germ layers, i.e. the process of gastrulation. A total of 410 porcine embryos were collected at 8 to 17 days post-insemination from 29 sows of the Danish Landrace breed. Embryos were categorized based on stereo-microscopic observations into the following stages: pre-streak stages 1 and 2, primitive streak stage, neural groove stage, and somite stage. Specimens were fixed at all stages, dehydrated and embedded in paraffin wax. Selected embryos at each stage (n = 28) were completely cut into serial sections for immunohistochemical evaluation of Oct-4 and vimentin. Pre-streak stage 1 embryos were defined by lack of polarization of the embryonic disk, whereas in pre-streak stage 2 embryos a crescent shaped thickening was seen at the posterior pole of the disk. This thickening, marking the first morphological anterior-posterior polarization of the embryo proper, was shown to be a site of incipient ingression of cells from the epiblast. Immunohistochemical analyses localized Oct-4 to nuclei and vimentin to cytoplasm of both founding and ingressing epiblast cells. During formation of mesoderm and endoderm, at the primitive streak stage, solitary Oct-4 positive cells, i.e. potential PGCs, were seen scattered in the endoderm. Cells of the epiblast displayed positive labeling for Oct-4 until specification for the ectoderm cell lineage at the subsequent neural groove stage. In mesoderm, Oct-4 likewise disappeared by the time of formation of the first somites, defining the following somite stage. Thus, at this stage the only cells labeled for Oct-4, i.e. potential PGCs, were seen solitarily scattered in the endoderm. By the 15-somite stage, such cells were no longer visible in the endoderm but were seen located in the mesoderm, spreading from the stalk of the yolk sac and allantois and extending through the mid- and hindgut areas into the incipient genital ridge. Vimentin localized to the mesenchyme and most other derivatives of neural crest and mesodermal origin. In conclusion, based on Oct-4 labeling and distribution pattern, we strongly believe that we have identified the porcine PGCs from the primitive streak stage.


2020 ◽  
Vol 22 (12) ◽  
pp. 1436-1446 ◽  
Author(s):  
Tsotne Chitiashvili ◽  
Iris Dror ◽  
Rachel Kim ◽  
Fei-Man Hsu ◽  
Rohan Chaudhari ◽  
...  

Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 625-637 ◽  
Author(s):  
Jonathan Hodgkin ◽  
Andrew D. Chisholm ◽  
Michael M. Shen

Sex determination in Caenorhabditis elegans involves a cascade of major regulatory genes connecting the primary sex determining signal, X chromosome dosage, to key switch genes, which in turn direct development along either male or female pathways. Animals with one X chromosome (XO) are male, while animals with two X chromosomes (XX) are hermaphrodite: hermaphrodite development occurs because the action of the regulatory genes is modified in the germ line so that both sperm and oocytes are made inside a completely female soma. The regulatory genes are being examined by both genetic and molecular means. We discuss how these major genes, in particular the last switch gene in the cascade, tra-1, might regulate the many different sex-specific events that occur during the development of the hermaphrodite and of the male.Key words: nematode, Caenorhabditis elegans, sex determination, sexual differentiation, cell lineage analysis.


PLoS Genetics ◽  
2008 ◽  
Vol 4 (2) ◽  
pp. e30 ◽  
Author(s):  
Susana M Chuva de Sousa Lopes ◽  
Katsuhiko Hayashi ◽  
Tanya C Shovlin ◽  
Will Mifsud ◽  
M. Azim Surani ◽  
...  

Development ◽  
1968 ◽  
Vol 20 (3) ◽  
pp. 247-260
Author(s):  
Teresa Rogulska

Suggestive evidence for the extragonadal origin of germ cells in birds was first presented by Swift (1914), who described primordial germ cells in the chick embryo at as early a stage as the primitive streak. According to Swift, primordial germ cells are originally located extra-embryonically in the anterior part of the blastoderm and occupy a crescent-shaped region (‘germinal crescent’) on the boundary between area opaca and area pellucida. Swift also found that primordial germ cells later enter into the blood vessels, circulate together with the blood throughout the whole blastoderm and finally penetrate into the genital ridges, where they become definitive germ cells. Swift's views have been confirmed in numerous descriptive and experimental investigations. Among the latter, the publications of Willier (1937), Simon (1960) and Dubois (1964a, b, 1965a, b, 1966) merit special attention. Dubois finally proved that the genital ridges exert a strong chemotactic influence on the primordial germ cells.


Sign in / Sign up

Export Citation Format

Share Document