Surface tensions of embryonic tissues predict their mutual envelopment behavior

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1611-1620 ◽  
Author(s):  
R.A. Foty ◽  
C.M. Pfleger ◽  
G. Forgacs ◽  
M.S. Steinberg

During embryonic development, certain tissues stream to their destinations by liquidlike spreading movements. According to the ‘differential adhesion hypothesis’, these movements are guided by cell-adhesion-generated tissue surface tensions (sigmas), operating in the same manner as surface tensions do in the mutual spreading behavior of immiscible liquids, among which the liquid of lower surface tension is always the one that spreads over its partner. In order to conduct a direct physical test of the ‘differential adhesion hypothesis’, we have measured the sigmas of aggregates of five chick embryonic tissues, using a parallel plate compression apparatus specifically designed for this purpose, and compared the measured values with these tissues' mutual spreading behaviors. We show that aggregates of each of these tissues behave for a time as elasticoviscous liquids with characteristic surface tension values. Chick embryonic limb bud mesoderm (sigma = 20.1 dyne/cm) is enveloped by pigmented epithelium (sigma = 12.6 dyne/cm) which, in turn, is enveloped by heart (sigma = 8.5 dyne/cm) which, in turn, is enveloped by liver (sigma = 4.6 dyne/cm) which, in turn, is enveloped by neural retina (sigma = 1.6 dyne/cm). Thus, as predicted, the tissues' surface tension values fall in the precise sequence required to account for their mutual envelopment behavior.

2000 ◽  
Vol 78 (3) ◽  
pp. 243-251 ◽  
Author(s):  
D A Beysens ◽  
G Forgacs ◽  
J A Glazier

Early embryonic development is characterized by spectacular morphogenetic processes such as sorting or spreading of tissues. Analogy between viscoelastic fluids and certain properties of embryonic tissues turned out to be useful in interpreting some aspects of these morphogenetic phenomena. In accordance with the differential adhesion hypothesis, the values of tissue-specific surface tensions have been shown to be consistent with the equilibrium configurations such tissues reach in the course of sorting and spreading. A method to measure tissue surface tension and viscoelastic properties is described. Notions like the Laplace's equation relating surface tension to radii of curvature, or the Kelvin model of viscoelasticity are used to analyze the results of these measurements. The fluid analogy is extended to time-dependent phenomena, in particular, to the analysis of cellular pattern evolution in the course of spreading. On the basis of recent experimental findings, we demonstrate that the kinetics of spreading and nucleation in binary fluids can be analyzed using the same formalism. We illustrate how our results can be used to obtain biologically relevant information on the strength of binding between specific cell adhesion molecules under near physiological conditions. We also suggest a diagnostic application of our method to monitor the metastatic potential of tumors. PACS No.: 03.65Ge


Development ◽  
1978 ◽  
Vol 47 (1) ◽  
pp. 1-15
Author(s):  
K. F. Heintzelman ◽  
H. M. Phillips ◽  
G. S. Davis

Emerging chick limb-buds at first grow only in length, not width. The growth parameters of limb mesoderm — cell shapes, distributions, division patterns and cleavage orientations — are incompatible with representations of this tissue as an elongating solid composed of proliferating but immobile cells. We observe that samples of both early limb mesoderm and also surrounding flank mesoderm round up like liquid droplets in organ culture. Therefore, liquid-like tissue rearrangments, including cell shuffling movements and neighbor exchanges, may occur in limb and flank mesoderm during in vivo limb budding. If so, differences in limb-flank surface tension properties would have to be present to keep these two fluid cell populations segregated into distinct tissues and properly positioned underneath limb and flank ectoderm. Previous studies have shown that tissue surface tensions are reflected in the spreading behavior of fused pairs of cell aggregates. To determine whether or not they possess differing surface tension properties, we pair excised pieces of early leg-bud, wing-bud or intervening flank mesoderm with pieces of 5¾-day heart or liver in hanging drop cultures. For more rapid determinations of relative liquid-tissue cohesiveness than can be obtained in conventional, long-term experiments, aggregate pairs are fixed shortly after fusion. Since partial-envelopment configurations depend upon relative aggregate sizes as well as their tissue surface tensions, new procedures are used to deduce relative aggregate cohesiveness from cross-sections of these briefly fused aggregate pairs. The envelopment tendencies of aggregates fixed 6–9 h after fusion are similar to those fixed 15–19 h after fusion: heart tends to surround leg; heart and wing surround each other with similar frequencies, but flank tends to surround heart. Also, liver tends to surround leg and wing, but flank tends to surround liver. When the effects of relative aggregate size are taken into account, these non-random, tissue-specific patterns of aggregate envelopment indicate that the relative cohesiveness of these tissues falls into the sequence: leg > heart ∼ wing > liver > flank. The in vitro behavior of early limb-bud and neighboring flank mesoderm in these studies suggests that they are not simply mechanically identical portions of a single liquid tissue. We have previously proposed that early limb-bud mesoderm may act like a non-dispersing, cohesive liquid droplet which is embedded within a less cohesive fluid layer of flank tissue (and which is molded distally into paddle-shaped conformations by solid-like limb ectoderm and/or subjacent extracellular matrix). This proposal is not only compatible with the growth parameters of limb-bud mesoderm in vivo, but is also consistent with our observation that flank mesoderm surrounds tissues which surround limb mesoderm in these aggregate-fusion-experiments. Our model suggests that differences in the surface tension properties of limb vs. flank mesoderm may combine with differential cell proliferation, and possibly with active limb ectoderm expansion, to generate initial proximodistal limb outgrowth.


1993 ◽  
Vol 75 (1) ◽  
pp. 468-477 ◽  
Author(s):  
S. B. Hall ◽  
M. S. Bermel ◽  
Y. T. Ko ◽  
H. J. Palmer ◽  
G. Enhorning ◽  
...  

This paper examines two factors, shape deformation and surface viscosity, that affect measurements of surface tension of lung surfactants with the oscillating bubble surfactometer. At lower surface tensions, the compressed bubble in this apparatus becomes deformed to an oblate ellipsoid that cannot be analyzed rigorously using the simplified (spherical) Laplace equation to calculate surface tension from interfacial pressure drop. However, for the small air bubbles present in this apparatus, analysis with more general equations for ellipsoids of revolution shows that deformation effects are limited to extremely low surface tensions, and the absolute error from the spherical approximation is minimal in practice. In contrast, this was not the case for the effects of surface dilational viscosity in oscillating bubble calculations. Direct measurements and values from the literature indicated that the surface dilational viscosities of lung surfactant, dipalmitoyl phosphatidylcholine, and palmitic acid were sufficient to give substantial errors if their effects on interfacial pressure drop were neglected during dynamic cycling. Surface tension calculations at maximum and minimum radii on the oscillating bubble apparatus remain accurate, because the time derivative of radius becomes zero and viscous effects vanish. However, surface tensions determined at points other than these extremes of bubble size should be interpreted with caution.


1979 ◽  
Vol 38 (1) ◽  
pp. 249-266
Author(s):  
A. Nicol ◽  
D.R. Garrod

It has been reported previously that sorting out of chick embryonic liver parenchyma and limb bud mesenchymal cells would take place in monolayer culture. The distribution of cell types obtained (liver formed the internal, discontinuous phase) was interpreted in terms of the differential adhesion hypothesis. It was suggested that, in monolayer, liver cells were more cohesive than limb bud cells. In this paper we set out to extend the previous observations with 2 particular questions in mind: (i) Is sorting out in monolayer a general phenomenon occurring between a wider range of cell types? (ii) Can evidence be provided for or against the interpretation of results in terms of the differential adhesion hypothesis? Sorting-out experiments were conducted on circular hydrophilic islands, on an otherwise hydrophobic substratum. Under these conditions, sorting-out in monolayer was obtained with binary combinations of 4 chick embryonic tissue types: liver parenchyma, limb bud mesenchyme, pigmented epithelium of the eye and corneal epithelium. With every combination but one, the cells of one type surrounded the cells of the other type, generating what we have called a ‘circle-within-a-circle’ configuration. With the remaining combination, liver parenchyma and corneal epithelium, only localized sorting was obtained. The ‘circle-within-a-circle’ configuration is consistent with an interpretation in terms of the differential adhesion hypothesis, according to which the distribution of cells is determined by the relative strengths of cohesions between their lateral surfaces. In direct support of this is the finding from plating the different cell types at sub-confluent density on hydrophilic substrata that limb bud is the cell tye having the weakest lateral cohesion in monolayer. Limb bud surrounded the other 3 tissues on hydrophilic island. A hierachy of lateral cohesiveness between the 4 cell types has been constructed. It is unlikely that the results can be explained in terms of specific cohesion. When plated together at subconfluent density, the 3 epithelial cell types aggregate together to form mixed monolayered islands, suggesting that they share common adhesive mechanisms.


One method by which the problem of the differentiation of animal tissues may be approached is by studying the behaviour of simple embryonic tissues when growing in an abnormal environment, such as that produced by grafting into atypical situations in vivo or by cultivation in vitro . It is along these lines that the investigations of the present writers are being conducted. The work so far completed, the results of which are recorded in the present communication, consists of a study of the development of the undifferentiated, embryonic limb-bud of the fowl when grafted subcutaneously into a postembryonic chick and when cultivated vitro. A preliminary investigation of the histogenesis of cartilage and bone in the limbs of the embryonic fowl was carried out by one of the writers (Fell, 1925) in order to provide normal standards with which to compare the experimental material. Rous (1910, 1911), Fichera (1909) and many others have successfully grafted foœtal and embryonic tissues into young and adult animals, usually in connection with the study of tumour growth ; a bibliography and summary of the earlier work is given in Fichera’s paper. Almost all the work on the development of grafts of the undifferentiated limb-buds has been carried out on the embryonic Amphibia by Braus, Harrison (1907, 1918, 1921), Detweiler (1918, 1925), Nicholas (1924) and others. Spurting (1923) describes a case of accidental but successful autotransplantation of the posterior limb-bud in a fowl embryo. Murray and Huxley (1925) record two experiments in which part of the limb-bud of a four-days’ embryo was successfully grafted on to the chorioallantoic membranes ; in one case “ a highly differentiated and very easily recognizable femur ” showing early ossification was found after 5 days’ growth.


Water Waves ◽  
2021 ◽  
Author(s):  
M. D. Groves

AbstractIn the applied mathematics literature solitary gravity–capillary water waves are modelled by approximating the standard governing equations for water waves by a Korteweg-de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension). These formal arguments have been justified by sophisticated techniques such as spatial dynamics and centre-manifold reduction methods on the one hand and variational methods on the other. This article presents a complete, self-contained account of an alternative, simpler approach in which one works directly with the Zakharov–Craig–Sulem formulation of the water-wave problem and uses only rudimentary fixed-point arguments and Fourier analysis.


Author(s):  
Yongchun Zhou ◽  
Junye Liu ◽  
Guozhen Guo ◽  
Kangchu Li ◽  
Jie Zhang ◽  
...  
Keyword(s):  
Limb Bud ◽  

In a previous communication (Strangeways and Fell, 1926) it was shown that if the undifferentiated limb-bud of the embryonic Fowl was cultivated in vitro , it underwent a considerable amount of progressive development. This capacity for independent development in vitro possessed by an isolated organ has been further investigated, and for these later experiments the writers have employed the early embryonic eye, a structure endowed with more complex potentialities than the limb-bud. As a result of these experiments it was found that the eyes of young Fowl embryos possess, in a remarkable degree, the faculty for self-differentiation in vitro and for “organotypic” growth as defined by Maximow (1925). The previous work on organotypic growth in vitro has already been briefly outlined in the writers’ earlier paper and need not be discussed here. The expenses connected with the experiments described in this communication were met by the Medical Research Council, to whom the writers desire to express their thanks.


Sign in / Sign up

Export Citation Format

Share Document