scholarly journals Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro .—I. The development of the undifferentiated limb-bud (a) when subcutaneously grafted into the post-embryonic chick and (b) when cultivated in vitro

One method by which the problem of the differentiation of animal tissues may be approached is by studying the behaviour of simple embryonic tissues when growing in an abnormal environment, such as that produced by grafting into atypical situations in vivo or by cultivation in vitro . It is along these lines that the investigations of the present writers are being conducted. The work so far completed, the results of which are recorded in the present communication, consists of a study of the development of the undifferentiated, embryonic limb-bud of the fowl when grafted subcutaneously into a postembryonic chick and when cultivated vitro. A preliminary investigation of the histogenesis of cartilage and bone in the limbs of the embryonic fowl was carried out by one of the writers (Fell, 1925) in order to provide normal standards with which to compare the experimental material. Rous (1910, 1911), Fichera (1909) and many others have successfully grafted foœtal and embryonic tissues into young and adult animals, usually in connection with the study of tumour growth ; a bibliography and summary of the earlier work is given in Fichera’s paper. Almost all the work on the development of grafts of the undifferentiated limb-buds has been carried out on the embryonic Amphibia by Braus, Harrison (1907, 1918, 1921), Detweiler (1918, 1925), Nicholas (1924) and others. Spurting (1923) describes a case of accidental but successful autotransplantation of the posterior limb-bud in a fowl embryo. Murray and Huxley (1925) record two experiments in which part of the limb-bud of a four-days’ embryo was successfully grafted on to the chorioallantoic membranes ; in one case “ a highly differentiated and very easily recognizable femur ” showing early ossification was found after 5 days’ growth.

In a previous communication (Strangeways and Fell, 1926) it was shown that if the undifferentiated limb-bud of the embryonic Fowl was cultivated in vitro , it underwent a considerable amount of progressive development. This capacity for independent development in vitro possessed by an isolated organ has been further investigated, and for these later experiments the writers have employed the early embryonic eye, a structure endowed with more complex potentialities than the limb-bud. As a result of these experiments it was found that the eyes of young Fowl embryos possess, in a remarkable degree, the faculty for self-differentiation in vitro and for “organotypic” growth as defined by Maximow (1925). The previous work on organotypic growth in vitro has already been briefly outlined in the writers’ earlier paper and need not be discussed here. The expenses connected with the experiments described in this communication were met by the Medical Research Council, to whom the writers desire to express their thanks.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 199-206 ◽  
Author(s):  
A. Vogel ◽  
C. Tickle

The polarizing region is a major signalling tissue involved in patterning the tissues of the vertebrate limb. The polarizing region is located at the posterior margin of the limb bud and can be recognized by its ability to induce additional digits when grafted to the anterior margin of a chick limb bud. The signal from the polarizing region operates at the tip of the bud in the progress zone, a zone of undifferentiated mesenchymal cells, maintained by interactions with the apical ectodermal ridge. A number of observations have pointed to a link between the apical ectodermal ridge and signalling by the polarizing region. To test this possibility, we removed the posterior apical ectodermal ridge of chick wing buds and assayed posterior mesenchyme for polarizing activity. When the apical ectodermal ridge is removed, there is a marked decrease in polarizing activity of posterior cells. The posterior apical ectodermal ridge is known to express FGF-4 and we show that the decrease in polarizing activity of posterior cells of wing buds that normally follows ridge removal can be prevented by implanting a FGF-4-soaked bead. Furthermore, we show that both ectoderm and FGF-4 maintain polarizing activity of limb bud cells in culture.


Development ◽  
1994 ◽  
Vol 120 (1) ◽  
pp. 177-187 ◽  
Author(s):  
S.A. Oberlender ◽  
R.S. Tuan

Cell adhesion molecules have been shown to be important mediators of morphogenesis and pattern formation. In this study, we have shown that N-cadherin is expressed in a specific spatiotemporal manner in the developing limb bud during chondrogenesis in vivo and in cultured limb mesenchyme in vitro. The time period of maximal expression of N-cadherin corresponds to the period of active cellular condensation, an event believed to be a necessary prerequisite for chondrogenic differentiation. To directly assess the functional involvement of N-cadherin in cellular condensation, we have examined the effects of perturbing N-cadherin activity on both cell aggregation and chondrogenesis using NCD-2, a rat monoclonal antibody directed against the binding region of N-cadherin. Non-immune rat IgG was used as a control. Our results show that functional N-cadherin is necessary for chondrogenesis to proceed both in vivo and in vitro. Limb mesenchymal cells exhibited characteristic Ca(2+)-dependent cell aggregation in suspension, which was inhibited in the presence of exogenous NCD-2. In micromass cultures of limb mesenchymal cells, NCD-2 inhibited overt chondrogenesis in a dose-dependent manner. Furthermore, NCD-2 inhibition of chondrogenesis in micromass cultures was time-dependent, suggesting that N-cadherin is crucially involved during the latter half of the first 24 hours of culture, a time period most likely corresponding to active cellular condensation. NCD-2 also significantly influenced limb development when injected into embryonic limb buds in vivo. In addition to significant inhibition of chondrogenesis and developmental delays, gross developmental deformities and perturbation of overall pattern formation were also observed. Taken together, these results demonstrate that N-cadherin is functionally required in mediating the cell-cell interactions among mesenchymal cells important for chondrogenesis in micromass culture in vitro and in the intact limb bud in vivo.


Sinusitis ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 71-89
Author(s):  
Ganesh Chandra Jagetia

Oroxylum indicum, Sonapatha is traditionally used to treat asthma, biliousness, bronchitis, diarrhea, dysentery, fevers, vomiting, inflammation, leukoderma, skin diseases, rheumatoid arthritis, wound injury, and deworm intestine. This review has been written by collecting the relevant information from published material on various ethnomedicinal and pharmacological aspects of Sonapatha by making an internet, PubMed, SciFinder, Science direct, and Google Scholar search. Various experimental studies have shown that Sonapatha scavenges different free radicals and possesses alkaloids, flavonoids, cardio glycosides, tannins, sterols, phenols, saponins, and other phytochemicals. Numerous active principles including oroxylin A, chrysin, scutellarin, baicalein, and many more have been isolated from the different parts of Sonapatha. Sonapatha acts against microbial infection, cancer, hepatic, gastrointestinal, cardiac, and diabetic disorders. It is useful in the treatment of obesity and wound healing in in vitro and in vivo preclinical models. Sonapatha elevates glutathione, glutathione-s-transferase, glutathione peroxidase, catalase, and superoxide dismutase levels and reduces aspartate transaminase alanine aminotransaminase, alkaline phosphatase, lactate dehydrogenase, and lipid peroxidation levels in various tissues. Sonapatha activates the expression of p53, pRb, Fas, FasL, IL-12, and caspases and inhibited nuclear factor kappa (NF-κB), cyclooxygenase (COX-2), tumor necrosis factor (TNFα), interleukin (IL6), P38 activated mitogen-activated protein kinases (MAPK), fatty acid synthetase (FAS), sterol regulatory element-binding proteins 1c (SREBP-1c), proliferator-activated receptor γ2 (PPARγ2), glucose transporter (GLUT4), leptin, and HPV18 oncoproteins E6 and E7 at the molecular level, which may be responsible for its medicinal properties. The phytoconstituents of Sonapatha including oroxylin A, chrysin, and baicalein inhibit the replication of SARS-CoV-2 (COVID-19) in in vitro and in vivo experimental models, indicating its potential to contain COVID-19 infection in humans. The experimental studies in various preclinical models validate the use of Sonapatha in ethnomedicine and Ayurveda.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2506
Author(s):  
Wamidh H. Talib ◽  
Ahmad Riyad Alsayed ◽  
Alaa Abuawad ◽  
Safa Daoud ◽  
Asma Ismail Mahmod

Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.


Blood ◽  
2012 ◽  
Vol 119 (11) ◽  
pp. 2443-2451 ◽  
Author(s):  
Tatiana Akimova ◽  
Ulf H. Beier ◽  
Yujie Liu ◽  
Liqing Wang ◽  
Wayne W. Hancock

Abstract Clinical and experimental studies show that inhibition of histone/protein deacetylases (HDAC) can have important anti-neoplastic effects through cytotoxic and proapoptotic mechanisms. There are also increasing data from nononcologic settings that HDAC inhibitors (HDACi) can exhibit useful anti-inflammatory effects in vitro and in vivo, unrelated to cytotoxicity or apoptosis. These effects can be cell-, tissue-, or context-dependent and can involve modulation of specific inflammatory signaling pathways as well as epigenetic mechanisms. We review recent advances in the understanding of how HDACi alter immune and inflammatory processes, with a particular focus on the effects of HDACi on T-cell biology, including the activation and functions of conventional T cells and the unique T-cell subset, composed of Foxp3+ T-regulatory cells. Although studies are still needed to tease out details of the various biologic roles of individual HDAC isoforms and their corresponding selective inhibitors, the anti-inflammatory effects of HDACi are already promising and may lead to new therapeutic avenues in transplantation and autoimmune diseases.


1991 ◽  
Vol 75 (2) ◽  
pp. 271-276 ◽  
Author(s):  
Atsushi Teramura ◽  
Robert Macfarlane ◽  
Christopher J. Owen ◽  
Ralph de la Torre ◽  
Kenton W. Gregory ◽  
...  

✓ Laser energy of 480 nm was applied in 1-µsec pulses varying between 2.2 and 10 mJ to in vitro and in vivo models of cerebral vasospasm. First, the pulsed-dye laser was applied intravascularly via a 320-µm fiber to basilar artery segments from six dogs. The segments were mounted in a vessel-perfusion apparatus and constricted to, on average, 70% of resting diameter by superfusion with dog hemolysate. Immediate increase in basilar artery diameter occurred to a mean of 83% of control. In a second model, the basilar artery was exposed transclivally in the rabbit. In three normal animals, superfusion of the artery with rabbit hemolysate resulted in a reduction of mean vessel diameter to 81% of control. Following extravascular application of the laser, vessels returned to an average of 106% of the resting state. In six rabbits, the basilar artery was constricted by two intracisternal injections of autologous blood, 3 days apart. Two to 4 days after the second injection, the basilar artery was exposed. Extravascular laser treatment from a quartz fiber placed perpendicular to the vessel adventitia resulted in an immediate 53% average increase in caliber to an estimated 107% of control. No reconstriction was observed over a period of up to 5 hours. Morphologically, damage to the arterial wall was slight. This preliminary investigation suggests that the 1-µsec pulsed-dye laser may be of benefit in the treatment of cerebral vasospasm.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Andreas Pollreisz ◽  
Ursula Schmidt-Erfurth

Cataract in diabetic patients is a major cause of blindness in developed and developing countries. The pathogenesis of diabetic cataract development is still not fully understood. Recent basic research studies have emphasized the role of the polyol pathway in the initiation of the disease process. Population-based studies have greatly increased our knowledge concerning the association between diabetes and cataract formation and have defined risk factors for the development of cataract. Diabetic patients also have a higher risk of complications after phacoemulsification cataract surgery compared to nondiabetics. Aldose-reductase inhibitors and antioxidants have been proven beneficial in the prevention or treatment of this sightthreatening condition in in vitro and in vivo experimental studies. This paper provides an overview of the pathogenesis of diabetic cataract, clinical studies investigating the association between diabetes and cataract development, and current treatment of cataract in diabetics.


2021 ◽  
pp. 63-67
Author(s):  
I.I. Khusnitdinov ◽  

Purpose. Еxperimental substantiation of the effectiveness of biocompatible biodegradable hydrogels based on hyaluronic acid and chitosan succinate as a carrier of ranibizumab in antiglaucoma operations. Material and methods. Hydrogel drainage (HD) was obtained immediately before surgery. A solution of ranibizumab (0.23 ml) was mixed with a solution of hyaluronic acid dialdehyde (0.5 ml), then a solution of chitosan succinate (0.5 ml) was added. Experimental studies were performed in 12 (12 eyes) healthy rabbits. The first group consisted of 6 eyes – 0.187 ml of ranibizumab per 1 ml of gel. In the control group, HD was used intraoperatively without the addition of ranibizumab (6 eyes). Morphological studies were performed on 7th, 21st, and 42nd days. Results. In experimental studies in vitro and in vivo, it was proved that ranibizumab, administered as a part of 0.1 ml of hydrogel drainage in the antiglaucoma surgery area is released within 3 weeks and suppresses vascularization, scarring of the operating area, and preserves the intrascleral cavity. The optimal concentration of ranibizumab was selected-0.02 ml in 0.1 ml of gel. Conclusion. The safety and effectiveness of the use of hydrogel drainage with ranibizumab based on hyaluronic acid dialdehyde and chitosan succinate in anti-glaucoma operations has been proven. Key words: experimental research, hydrogel drainage, ranibizumab, glaucoma surgery.


1970 ◽  
Vol 65 (3) ◽  
pp. 565-576 ◽  
Author(s):  
J. K. Voglmayr ◽  
R. N. Murdoch ◽  
I. G. White

ABSTRACT The effects of testosterone* and related steroids on the oxidative and glycolytic metabolism of freshly collected ram testicular spermatozoa and of spermatozoa stored under air in rete testis fluid for 3 days at 3°C have been studied. When freshly collected testicular spermatozoa were incubated with glucose under aerobic conditions only a small proportion of the utilized glucose could be accounted for as lactate. The addition of a number of steroids, including testosterone, androstanedione, 5β-androstanedione, androsterone, epiandrosterone and 5β-androsterone, greatly increased aerobic glycolysis, the oxidation of the substrate and the proportion of the utilized substrate converted to lactic acid. After 3 days storage at 3°C, testicular spermatozoa respired at a greater rate than spermatozoa freshly collected from the testes. Although the stimulating effect of steroids on aerobic glycolysis increased after storage, they depressed rather than stimulated the oxidation of glucose by stored testicular spermatozoa. With the exception of androstanedione, which slightly stimulated glycolysis, storage of testicular spermatozoa for 3 days in the presence of steroids did not significantly influence their subsequent metabolism when washed free of the steroids. Both freshly collected and stored ram testicular spermatozoa displayed a marked Pasteur effect, and utilized more glucose and produced more lactate under anaerobic than under aerobic conditions. In the absence of oxygen the steroids did not stimulate glycolysis to any extent. However, epiandrosterone depressed the glycolysis of freshly collected spermatozoa under anaerobic conditions and after storage, 5β-androsterone had a similar effect. Androstanedione, 5β-androstanedione, epiandrosterone and 5β-androsterone were the most effective steroids in altering the metabolism of testicular spermatozoa and, under almost all conditions of incubation, depressed the synthesis of amino acids from glucose. The results suggest that the effects of testosterone and related steroids in vitro may depend on the age of the spermatozoa after their release from the Sertoli cells; the steroid effects may have important consequences in vivo in relation to sperm maturation.


Sign in / Sign up

Export Citation Format

Share Document