scholarly journals Identification of a lineage of multipotent hematopoietic progenitors

Development ◽  
1997 ◽  
Vol 124 (10) ◽  
pp. 1929-1939 ◽  
Author(s):  
S.J. Morrison ◽  
A.M. Wandycz ◽  
H.D. Hemmati ◽  
D.E. Wright ◽  
I.L. Weissman

All multipotent hematopoietic progenitors in C57BL-Thy-1.1 bone marrow are divided among three subpopulations of Thy-1.1(lo) Sca-1+ Lin(-/lo) c-kit+ cells: long-term reconstituting Mac-1- CD4- c-kit+ cells and transiently reconstituting Mac-1(lo) CD4- or Mac-1(lo) CD4(lo) cells. This study shows that the same populations, with similar functional activities, exist in mice whose hematopoietic systems were reconstituted by hematopoietic stem cells after lethal irradiation. We demonstrate that these populations form a lineage of multipotent progenitors from long-term self-renewing stem cells to the most mature multipotent progenitor population. In reconstituted mice, Mac-1- CD4- c-kit+ cells gave rise to Mac-1(lo) CD4- cells, which gave rise to Mac-1(lo) CD4(lo) cells. Mac-1- CD4- c-kit+ cells had long-term self-renewal potential, with each cell being capable of giving rise to more than 10(4) functionally similar Mac-1- CD4- c-kit+ cells. At least half of Mac-1(lo) CD4- cells had transient self-renewal potential, detected in the spleen 7 days after reconstitution. Mac-1(lo) CD4(lo) cells did not have detectable self-renewal potential. The identification of a lineage of multipotent progenitors provides an important tool for identifying genes that regulate self-renewal and lineage commitment.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4193-4193 ◽  
Author(s):  
Jie Yang ◽  
Candice I. Saltiel ◽  
Ronald G. Nachtman ◽  
Xin Jing ◽  
Roland Jurecic

Abstract Intrinsic mechanisms that regulate self-renewal of mammalian stem cells are slowly being elucidated. Self-renewal of stem cells in Drosophila and C. elegans is regulated by members of the conserved Pumilio family of RNA-binding proteins. Previously, we have cloned and characterized two mouse and human Pumilio genes (Pum1 and Pum2), which are abundantly transcribed in hematopoietic stem cells (HSC). To study the function of mammalian Pum proteins in HSC and multipotent progenitors, the RNA-binding domain of Pum2 was over-expressed in a stem cell factor (SCF)-dependent HSC-like cell line EML. In the presence of SCF EML cells undergo SCF-dependent self-renewal and remain undifferentiated. In the presence of various cytokines (IL-3, GM-CSF, G-CSF, Epo, Tpo, IL-7, Flt3L) EML cells differentiate into erythroid, granulocytic, megakaryocytic and lymphoid cell lineages in vitro. The over-expression of Pum2-RBD leads to SCF-independent maintenance of EML cells, and suppresses their mutilineage differentiation in the absence of SCF. This uncoupling of the maintenance and differentiation signals in EML cells is accompanied by (a) an increased expression of the full-length c-kit and a novel truncated c-kit receptor called tr-kit, (b) cell intrinsic, SCF-independent activation of c-kit, and (c) constitutive activation of MAPK, PI3K and PLCγ signaling pathways in the absence of SCF. These results indicate that Pum2 could be supporting maintenance of multipotent hematopoietic cells through regulation of SCF/c-kit signaling pathway. An in depth analysis of the pattern of tr-kit expression in murine fetal liver and bone marrow-derived HSC, multipotent progenitors, lineage-committed progenitors and immature blood cells has shown that tr-kit expression is restricted to cell populations highly enriched for HSC and multipotent progenitors. This observation and the finding that an increased expression of tr-kit protein correlates with SCF-independent maintenance of EML cells, suggest that tr-kit could play an important role in SCF-independent activation of full-length c-kit receptor, and participate in the regulation of the balance between maintenance (self-renewal) and differentiation of HSC and multipotent progenitors. The fact that Pum2 and tr-kit are co-expressed in bone marrow cells enriched for HSC and early multipotent progenitors (e.g. Lin-Sca-1+c-kit+ cells), but not in later progenitors (e.g. Lin-Sca-1−c-kit− cells), suggests an exciting possibility that HSC and early multipotent progenitors utilize distinct SCF-dependent and SCF-independent c-kit signaling pathways. In contrast, more differentiated progenitors that lack self-renewal ability and do not express tr-kit, utilize only the canonical SCF-induced c-kit signaling. In this hypothetical model, the survival and maintenance of HSC and multipotent hematopoietic progenitors is mediated through SCF-independent c-kit signaling, whereas their differentiation depends on the canonical SCF-induced c-kit signaling. We are currently studying the effects of Pum2 and tr-kit over-expression and attenuation on (a) HSC and progenitor cell maintenance and differentiation, (b) HoxB4 and Notch1 pathways, involved in HSC maintenance and expansion, and (c) maintenance and differentiation of HSC expressing SLAM receptor CD150. Further study of Pum2 and tr-kit function could provide important new insights into the molecular regulation of two critical elements of self-renewal, inhibition of differentiation and induction of proliferation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Maria Rosa Lidonnici ◽  
Giulia Chianella ◽  
Francesca Tiboni ◽  
Matteo Barcella ◽  
Ivan Merelli ◽  
...  

Background Beta-thalassemia (Bthal) is a genetic disorder due to mutations in the ß-globin gene, leading to a reduced or absent production of HbA, which interferes with erythroid cell maturation and limits normal red cell production. Patients are affected by severe anemia, hepatosplenomegaly, and skeletal abnormalities due to rapid expansion of the erythroid compartment in bone marrow (BM) caused by ineffective erythropoiesis. In a classical view of hematopoiesis, the blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. In human, novel purification strategies based on differential expression of CD49f and CD90 enrich for long-term (49f+) and short-term (49f−) repopulating hematopoietic stem cells (HSCs), with distinct cell cycle properties, but similar myeloid (My) and lymphoid (Ly) potential. In this view, it has been proposed that erythroid (Ery) and megakaryocytic (Mk) fates branch off directly from CD90-/49f− multipotent progenitors (MPPs). Recently, a new study suggested that separation between multipotent (Ery/My/Ly) long-term repopulating cells (Subset1, defined as CLEC9AhighCD34low) and cells with only My/Ly and no Ery potential (Subset2, defined as CLEC9AlowCD34high)occurs within the phenotypic HSC/MPP and CD49f+ HSCs compartment. Aims A general perturbed and stress condition is present in the thalassemic BM microenvironment. Since its impact on the hematopoietic cell subpopulations is mostly unknown, we will investigate which model of hematopoiesis/erythropoiesis occurs in Bthal. Moreover, since Beta-Thalassemia is an erythropoietic disorder, it could be considered as a disease model to study the 'erythroid branching' in the hematopoietic hierarchy. Methods We defined by immunophenotype and functional analysis the lineage commitment of most primitive HSC/MPP cells in patients affected by this pathology compared to healthy donors (HDs). Furthermore, in order to delineate the transcriptional networks governing hematopoiesis in Beta-thalassemia, RNAseq analysis was performed on sorted hematopoietic subpopulations from BM of Bthal patients and HDs. By droplet digital PCR on RNA purified from mesenchymal stromal cells of Bthal patients, we evaluated the expression levels of some niche factors involved in the regulation of hematopoiesis and erythropoiesis. Moreover, the protein levels in the BM plasma were analyzed by performing ELISA. Results Differences in the primitive compartment were observed with an increased proportion of multipotent progenitors in Bthal patients compared to HDs. The Subset1 compartment is actually endowed with an enhanced Ery potential. Focusing on progenitors (CD34+ CD38+) and using a new sorting scheme that efficiently resolved My, Ery, and Mk lineage fates, we quantified the new My (CD71-BAH1-/+) and Ery (CD71+ BAH1-/+) subsets and found a reduction of Ery subset in Bthal samples. We can hypothesize that the erythroid-enriched subsets are more prone to differentiate quickly due to the higher sensitivity to Epo stimuli or other bone marrow niche signals. Gene set enrichment analysis, perfomed on RNAseq data, showed that Bthal HSC/MPP presented negative enrichment of several pathways related to stemness and quiescence. Cellular processes involved in erythropoiesis were found altered in Bthal HSC. Moreover, some master erythroid transcription factors involved were overrepresented in Bthal across the hematopoietic cascade. We identified the niche factors which affect molecular pathways and the lineage commitment of Bthal HSCs. Summary/Conclusions Overall, these data indicate that Bthal HSCs are more cycling cells which egress from the quiescent state probably towards an erythroid differentiation, probably in response to a chronic BM stimulation. On the other hand,some evidences support our hypothesis of an 'erythroid branching' already present in the HSC pool, exacerbated by the pathophysiology of the disease. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


1984 ◽  
Vol 159 (3) ◽  
pp. 731-745 ◽  
Author(s):  
R A Fleischman ◽  
B Mintz

Bone marrow of normal adult mice was found, after transplacental inoculation, to contain cells still able to seed the livers of early fetuses. The recipients' own hematopoietic stem cells, with a W-mutant defect, were at a selective disadvantage. Progression of donor strain cells to the bone marrow, long-term self-renewal, and differentiation into myeloid and lymphoid derivatives was consistent with the engraftment of totipotent hematopoietic stem cells (THSC) comparable to precursors previously identified (4) in normal fetal liver. More limited stem cells, specific for the myeloid or lymphoid cell lineages, were not detected in adult bone marrow. The bone marrow THSC, however, had a generally lower capacity for self-renewal than did fetal liver THSC. They had also embarked upon irreversible changes in gene expression, including partial histocompatibility restriction. While completely allogeneic fetal liver THSC were readily accepted by fetuses, H-2 incompatibility only occasionally resulted in engraftment of adult bone marrow cells and, in these cases, was often associated with sudden death at 3-5 mo. On the other hand, H-2 compatibility, even with histocompatibility differences at other loci, was sufficient to ensure long-term success as often as with fetal liver THSC.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2237-2237
Author(s):  
Ravindra Majeti ◽  
Christopher Y. Park ◽  
Irving L. Weissman

Abstract Mouse hematopoiesis is initiated by long-term hematopoietic stem cells (HSC) that differentiate into a series of multipotent progenitors that exhibit progressively diminished self-renewal ability. In human hematopoiesis, populations enriched for HSC have been identified, as have downstream lineage-committed progenitors, but not multipotent progenitors. Previous reports indicate that human HSC are enriched in Lin-CD34+CD38- cord blood and bone marrow, and express CD90. We demonstrate that the Lin-CD34+CD38- fraction of cord blood and bone marrow can be subdivided into three subpopulations: CD90+CD45RA-, CD90-CD45RA-, and CD90-CD45RA+. While, the function of the CD90- subpopulations is unknown, the CD90+CD45RA- subpopulation presumably contains HSC. We report here in vitro and in vivo functional studies of these three subpopulations from normal human cord blood. In vitro, CD90+CD45RA- cells formed all types of myeloid colonies in methylcellulose and were able to replate with 70% efficiency. CD90-CD45RA- cells also formed all types of myeloid colonies, but replated with only 33% efficiency. CD90-CD45RA+ cells failed to form myeloid colonies in methylcellulose. In liquid culture, CD90+CD45RA- cells gave rise to all three subpopulations; CD90-CD45RA- cells gave rise to both CD90- subpopulations, but not CD90+ cells; CD90-CD45RA+ cells gave rise to themselves only. These data establish an in vitro differentiation hierarchy from CD90+CD45RA- to CD90-CD45RA- to CD90-CD45RA+ cells among Lin-CD34+CD38- cord blood. In vivo, xenotransplantation of CD90+CD45RA- cells into NOD/SCID/IL-2R?-null newborn mice resulted in long-term multilineage engraftment with transplantation of as few as 10 purified cells. Secondary transplants from primary engrafted mice also resulted in long-term multilineage engraftment, indicating the presence of self-renewing HSC. Transplantation of CD90-CD45RA- cells also resulted in long-term multilineage engraftment; however, secondary transplants did not reliably result in long-term engraftment, indicating a reduced capacity for self-renewal. Transplantation of CD90-CD45RA+ cells did not result in any detectable human hematopoietic cells, indicating that the function of these cells is undetermined. Finally, transplantation of limiting numbers of CD90-CD45RA- cells (less than 100) resulted in multilineage human engraftment at 4 weeks, that was no longer detectable by 12 weeks. Thus, the CD90-CD45RA- subpopulation is capable of multilineage differentiation while exhibiting limited self-renewal ability. We believe this study represents the first prospective identification of a population of human multipotent progenitors, Lin-CD34+CD38-CD90-CD45RA- cord blood.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 466-466
Author(s):  
Jennifer L Gori ◽  
Jason M Butler ◽  
Devikha Chandrasekaran ◽  
Brian C Beard ◽  
Daniel J Nolan ◽  
...  

Clinical use of human pluripotent stem cell (PSC)-hematopoietic stem cells (HSCs) is impeded by low engraftment potential. This block suggests that additional vascular derived angiocrine signals and hematopoietic cues must be provided to produce authentic HSCs. In addition, gene modification of induced (i)PSCs with a chemotherapy resistance transgene would provide a selective mechanism to stabilize or increase engraftment of HSCs. We therefore hypothesized that modifying iPSCs to express the O6-benzylguanine (O6BG)-resistant P140K variant of methylguanine methyltransferase (MGMT), would support in vivo selection of early-engrafted iPSC-HSCs. We further postulated that Akt-activated human endothelial cells afforded by transduction of the E4ORF1 gene (E4ORF1+ECs) through angiocrine upregulation of Notch and IGF ligands would provide the necessary signals under xenobiotic-free conditions to promote definitive hematopoiesis. This vascular induction platform could drive the emergence of true HSCs. We focused on pigtail macaque (Mn)iPSCs, as a scalable, clinically relevant nonhuman primate model. MniPSCs modified to express P140K had 15-fold higher MGMT levels compared to levels in human peripheral blood mononuclear cells. P140K-MniPSCs differentiated into chemoresistant CD34+ hematopoietic progenitors (50% CD34+) with a predominant long-term (LT)-HSC-like phenotype (CD34+CD38-Thy1+CD45RA-CD49f+). Hematopoietic progenitors maintained colony forming potential after O6BG and bis-chloroethylnitrosourea (BCNU) treatment. HSCs expanded on E4ORF1+ECs maintained colony forming potential, in contrast to cells cultured with cytokines alone, with a 22-fold increase in CD34+ cell content and 10-fold increase in LT-HSC-like cells. Importantly, MniPSC-HSCs expanded with the E4ORF1+ECs had long-term engraftment in NSG mice at levels comparable to Mn bone marrow HSC engrafted mice. O6BG/BCNU treatment increased engraftment to 35% CD45+ cells the blood of mice transplanted with E4ORF1+EC expanded P140K-MniPSC-HSCs, which was maintained 16 weeks post transplantation. Primate CD45+ cell levels in the blood after selection were significantly higher for this cohort compared to mice transplanted with P140K-MniPSC-HSCs expanded in the “cytokines alone” condition (18% vs. 3% CD45+, P<0.05). On average, 15% CD34+ and 37% CD45+ cells were detected in the bone marrow of mice transplanted with E4ORF1+EC-expanded P140K-MniPSC HSCs, which is significantly higher than levels detected in the other cohorts (Table 1). CD45+ cells in the marrow were predominantly myeloid but lymphoid subsets were also present (10-25% CD3+ cells). Remarkably, the level of gene marking in CFCs and number of gene marked CFCs from mouse bone marrow was substantially higher for mice transplanted with E4ORF1+EC expanded compared to cytokine expanded P140K-MniPSC-HSCs (Table 1). Finally, to confirm engraftment of authentic HSCs, secondary transplants were established. Although engraftment was achieved in all secondary transplanted cohorts, the level of nonhuman primate cells detected was significantly higher in animals transplanted with E4ORF1+EC expanded P140K-MniPSC-HSCs. Significantly more lymphocytes (CD45+CD3+ and CD45+CD56+) and monocytes (CD45+CD14+) were detected in the blood of these secondary transplant recipients. These findings confirm generation of bona fide HSCs derived from nonhuman primate iPSCs and demonstrate that O6BG/BCNU chemotherapy supports in vivo selection of P140K-MniPSC-HSCs generated by co-culture with the E4ORF1+EC vascular platform. Our studies mark a significant advance toward clinical translation of PSC-based blood therapeutics and the development of a nonhuman primate preclinical model. Table 1 CD34+ and CD45+ engraftment and gene marking in the bone marrow of mice transplanted with nonhuman primate HPSCs from MniPSCs and bone marrow. HSCs E4ORF1+ECs O6BG/BCNU Mean %CD34+ Mean %CD45+ % gene marking in CFCs (lentivirus+) total lentivirus+ CFCs per 105 cells GFP-MniPSC + - 3 16 9 ± 2 13 ± 2 P140K-MniPSC + - 4 19 12 ± 5 17 ± 7 P140K-MniPSC - + 0.4 24 3 ± 2 2 ± 1 P140K-MniPSC + + 15 37 27 ± 24 111 ± 96 Mn BM CD34+ - - 2 21 0 0 Disclosures: Nolan: Angiocrine Bioscience: Employment. Ginsberg:Angiocrine Bioscience: Employment. Rafii:Angiocrine Bioscience: Founder Other.


PLoS Genetics ◽  
2014 ◽  
Vol 10 (1) ◽  
pp. e1004079 ◽  
Author(s):  
Marie S. Hasemann ◽  
Felicia K. B. Lauridsen ◽  
Johannes Waage ◽  
Janus S. Jakobsen ◽  
Anne-Katrine Frank ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2325-2325
Author(s):  
Joseph Yusup Shin ◽  
Wenhuo Hu ◽  
Christopher Y. Park

Abstract Abstract 2325 Hematopoietic stem cells (HSC) can be identified on the basis of differential cell surface protein expression, such that 10 out of 13 purified HSC (Lin−c-Kit+Sca-1+CD150+CD34−FLK2−) exhibit long-term reconstitution potential in single-cell transplants. HSCs express c-Kit, and interactions between c-Kit and its ligand, stem cell factor, have been shown to be critical for HSC self-renewal; however, HSCs express a log-fold variation in c-Kit levels. We hypothesized that differing levels of c-Kit expression on HSCs may identify functionally distinct classes of HSCs. Thus, we measured the function and cellular characteristics of c-Kithi HSCs and c-Kitlo HSCs (defined as the top 30% and bottom 30% of c-Kit expressors, respectively), including colony formation, cell cycle status, lineage fates, and serial engraftment potential. In methylcellulose colony assays, c-Kithi HSCs formed 5-fold more colonies than c-Kitlo HSCs (P=0.01), as well as 4-fold more megakaryocyte colonies in vitro. c-Kithi HSC were 2.4-fold enriched for cycling cells (G2-S-M) in comparison to c-Kitlo HSC as assessed by flow cytometry in vivo (15.4% versus 6.4%, P=0.001). Lethally irradiated mice competitively transplanted with 400 c-Kitlo HSCs and 300,000 competitor bone marrow cells exhibited increasing levels of donor chimerism, peaking at a mean of 80% peripheral blood CD45 chimerism by 16 weeks post-transplantation, whereas mice transplanted with c-Kithi HSCs reached a mean of 20% chimerism (p<0.00015). Evaluation of the bone marrow revealed an increase in HSC chimerism from 23% to 44% in mice injected with c-Kitlo HSCs from weeks 7 to 18, while HSC chimerism decreased from 18% to 3.0% in c-Kithi HSC-transplanted mice (P<0.00021). Levels of myeloid chimerism in the bone marrow and peripheral blood were not significantly different during the first 4 weeks following transplantation between mice transplanted with c-Kithi or c-Kitlo HSCs, and evaluation of HSC bone marrow lodging at 24 hours post-transplantation demonstrated no difference in the number of c-Kithi and c-Kitlo HSCs, indicating that differential homing is not the reason for the observed differences in long-term engraftment. Donor HSCs purified from mice transplanted with c-Kithi HSC maintained higher levels of c-Kit expression compared to those from mice injected with c-Kitlo HSC by week 18 post-transplantation (P=0.01). Secondary recipients serially transplanted with c-Kithi HSC exhibited a chimerism level of 40% to 3% from week 4 to 8 post-secondary transplant, whereas chimerism levels remained at 6% in mice injected with c-Kitlo HSC. These results indicate that c-Kithi HSCs exhibit reduced self-renewal capacity compared with c-Kitlo HSCs, and that the differences in c-Kithi and c-Kitlo HSC function are cell-intrinsic. Analysis of transplanted HSC fates revealed that c-Kithi HSCs produced two-fold more pre-megakaryocyte-erythroid progenitors and pluriploid megakaryocytes compared to their c-Kitlo counterparts in vivo, suggesting a megakaryocytic lineage bias in c-Kithi HSC. Consistent with this finding, the transplanted c-Kithi HSC gave rise to 10-fold more platelets and reached a maximum platelet output two days earlier than c-Kitlo HSC. To determine the potential mechanisms underlying the transition from c-Kitlo to c-Kithi HSCs, we assessed the activity of c-Cbl, an E3 ubiquitin ligase known to negatively regulate surface c-Kit expression in a Src-dependent manner. Flow cytometric analysis revealed 6-fold more activated c-Cbl in freshly purified c-Kitlo HSC compared to c-Kithi HSC (P=0.02), suggesting that functional loss of c-Cbl increases c-Kit expression on c-Kitlo HSCs. Mice treated for nine days with Src inhibitors, which inhibit c-Cbl activity, experienced a 1.5-fold and 2-fold increase in the absolute number of c-Kithi HSCs (P=0.067) and megakaryocyte progenitors (P=0.002), respectively. Thus, c-Cbl loss likely promotes the generation of c-Kithi HSCs. In summary, differential expression of c-Kit identifies HSC with distinct functional attributes with c-Kithi HSC exhibiting increased cell cycling, megakaryocyte lineage bias, decreased self-renewal capacity, and decreased c-Cbl activity. Since c-Kitlo HSC represent a population of cells enriched for long-term self-renewal capacity, characterization of this cell population provides an opportunity to better understand the mechanisms that regulate HSC function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4739-4739
Author(s):  
Hiroyoshi Kunimoto ◽  
Yumi Fukuchi ◽  
Masatoshi Sakurai ◽  
Daichi Abe ◽  
Ken Sadahira ◽  
...  

Abstract Abstract 4739 Ten-eleven-translocation 2 (TET2) gene is one of the frequent targets of mutation in various hematologic malignancies. These observations suggest critical roles of TET2 dysfunction in their molecular pathogenesis. To investigate physiological roles of TET2 in hematopoiesis, we previously analyzed fetal liver (FL) hematopoiesis of Tet2 gene-trap (Tet2gt) mice and showed that Tet2gt/gt FL cells displayed enhanced self-renewal and long term repopulating (LTR) capacity with expansion of Lineage(−)Sca-1(+)c-Kit(+) (LSK) and common myeloid progenitor (CMP) fractions. However, there remain several questions unanswered. First, self-renewal capacity was examined only by using bulk FL cells and therefore effects of Tet2 loss on purified cell populations such as hematopoietic stem cells (HSCs) or hematopoietic progenitor cells (HPCs) remain elusive. Second, because other groups have reported myeloid transformation in Tet2 conditional knockout mice, it is possible that Tet2 loss confers self-renewal capacity to non-self-renewing myeloid progenitors such as CMPs. Third, effects of Tet2 haploinsufficiency on adult hematopoiesis was not examined using purified HSCs or HPCs. To address these issues, we analyzed E14.5 FL and adult bone marrow (BM) cells from Tet2gt mice. We first performed serial replating assay of FL-LSK cells in methylcellulose containing interleukin (IL)-3, IL-6, stem cell factor (SCF) and erythropoietin (Epo). In this assay, Tet2gt/gt FL-LSK cells showed significantly higher replating capacity as compared to that of WT cells. Interestingly, Tet2gt/gt FL-LSK cells formed various types of colonies including granulocyte-macrophage (GM) and erythrocyte-megakaryocyte (EM) colonies, whereas WT FL-LSK cells generated only GM colonies at the second time of replating, showing that multipotent differentiation capacity was maintained in Tet2gt/gt cells even in the presence of lineage-acting cytokines. Next we examined the self-renewal capacity of highly purified FL-HSCs (CD34+LSK or CD150+LSK cells) by competitive repopulation assay. As expected, the recipients of Tet2gt/gt CD34+LSK cells showed significantly higher donor chimerism in peripheral blood as compared to those receiving WT cells. Furthermore, CD150+LSK cells from Tet2+/gt and Tet2gt/gt FLs demonstrated higher peripheral blood repopulation in the secondary and tertiary recipient mice as compared to that of WT recipients in serial transplantation assay. These results indicate that the enhanced self-renewal and LTR capacity of Tet2-mutant FL cells was uniquely associated with highly purified HSCs. This conclusion also applied to the BM LSK cells from adult mice, since Tet2+/gt BM LSK cells also showed significantly higher peripheral blood contribution compared to the WT cells in serial transplantation assays. This result demonstrates that Tet2 haploinsufficiency is sufficient to confer the enhanced self-renewal and LTR capacity to HSCs in adult hematopoiesis. Lastly, we examined self-renewal capacity of FL CMPs by serial replating assay. Interestingly, Tet2gt/gt FL CMP cells displayed increased replating capacity as compared to WT cells. However, in vivo repopulation assay using Tet2+/+, Tet2+/gt, and Tet2gt/gt FL CMP cells showed no significant difference in peripheral blood chimerism among these recipients. Taken together, enhanced self-renewal and LTR capacity by Tet2 ablation is uniquely associated with HSCs in FL and adult BM, but not with myeloid progenitors, indicating that Tet2 regulates self-renewal program intrinsic to HSCs. In addition, Tet2 haploinsufficiency is sufficient to enhance self-renewal and LTR capacity of HSCs, which explains pathological relation between high incidence of heterozygous TET2 mutations and hematologic malignancies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-25-SCI-25
Author(s):  
Shahin Rafii ◽  
Jason M. Butler ◽  
Ginsberg Michael ◽  
Jennifer L Gori ◽  
Hans-Peter Kiem ◽  
...  

Abstract Organ-specific endothelial cells (ECs) are both conduits for delivery of nutrients and also establish an instructive vascular niche. The vascular niche produces paracrine factors, (i.e., angiocrine factors), that balance self-renewal and differentiation of hematopoietic stem/progenitor cells (HSPCs) (1,2). Activation of Akt-mTOR pathway in sinusoidal ECs (SECs) stimulates physiological expression of angiocrine factors, including Kit-ligand, Notch-ligands, Wnts, FGFs, BMPs and TGFb, that expand long-term repopulating HSPCs. Activation of MAPkinase in ECs upregulates expression of GM-CSF, M-CSF, IL6, IL7, SDF-1 and G-CSF (..others) to accelerate HSPC multi-lineage differentiation. We developed an ex vivo vascular niche in which HSPC/EC co-cultures are maintained and expanded in serum-free conditions. This vascular niche platform produces physiologic levels of angiocrine factors that balance expansion/differentiation of human cord blood, mobilized peripheral blood, and steady state bone marrow HSPCs that maintain their ability to reconstitute hematopoiesis in vivo. In contrast to our vascular platform, co-culture with bone marrow-derived mesenchymal does not support long-term expansion of HSPCs. In collaboration with Drs. Kiem and Gori at Hutchinson Cancer Center, we have shown that ECs expand repopulating nonhuman primate marrow-derived HSPCs. Transplantation of the vascular-niche expanded gene-modified HSPCs reconstituted long-term multi-lineage hematopoiesis in autologous transplantation setting in nonhuman primates. Importantly, intravenous co-infusion of the vascular niche with HSPCs did not cause infusional toxicity. Vascular niche-expanded HSPCs supported robust hematopoietic recovery underscoring the essential function of vascular niche-signals in hematopoietic reconstitution without provoking fibrosis (3). The ECs also supplies key signals that induce emergence of HSPCs from hemogenic ECs. To prove this point, we transduced adult human or mouse ECs with Runx1/Spi1/Gfi1/FosB transcription factors along with vascular niche-induction allowing for conversion of these ECs into stable and long-term engraftable HSPCs, including functional immune cells (4). Importantly, transition through a pluripotent state results in poorly engraftable hematopoietic cells that are unstable and upon exposure to pathophysiological stressors differentiate aberrantly into other cell-types. Remarkably, signals from vascular niche support specification of repopulating multipotent-HSPCs from both human and nonhuman primate pluripotent stem cells (5). In summary, we developed and characterized a vascular niche platform that provides physiologically relevant levels of key angiocrine factors that stimulate safe clinical-scale expansion of authentic adult, cord blood, and primitive HSPCs under GMP-grade culture conditions. We are currently translating the vascular niche platform to the clinical setting, to evaluate the potential of co-transplantation of HSPCs with vascular niche cells to reconstruct injured EC niches thereby accelerating short- and long-term hematopoietic recovery. This first-in-man clinical application will set the stage for repopulation with true hematopoietic stem cells, thereby enabling use of a vascular niche for treatment of a wide range of acquired, inherited, and malignant hematopoietic diseases. 1. Butler JM …… Rafii S. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell, 3:251-64, 2010. 2. Nolan D........Rafii S. Molecular and cellular signatures of tissue-specific vascular heterogeneity in organ maintenance and regeneration. Developmental Cell, 26(2):204-19, 2013. 3. Ding BS …..Rafii S. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis.Nature 505(7481):97-102, 2014. 4. Sandler VM, Lis R ...... Butler JM, Scandura JM, Rafii S. Reprogramming of Human Endothelium Into Engraftable Hematopoietic Progenitors by Vascular Niche Induction.Nature, 511(7509):312-8, 2014. 5. Gori J., Butler JM, .....Rafii S, Kiem HP. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. Journal of Clinical Investigation, 125(3): 1243-54, 2015. Disclosures Rafii: Angiocrine Bioscience: Consultancy, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document