Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region

Development ◽  
2001 ◽  
Vol 128 (6) ◽  
pp. 965-972 ◽  
Author(s):  
R. Dorfman ◽  
B.Z. Shilo

The BMP pathway patterns the dorsal region of the Drosophila embryo. Using an antibody recognizing phosphorylated Mad (pMad), we followed signaling directly. In wild-type embryos, a biphasic activation pattern is observed. At the cellular blastoderm stage high pMad levels are detected only in the dorsal-most cell rows that give rise to amnioserosa. This accumulation of pMad requires the ligand Screw (Scw), the Short gastrulation (Sog) protein, and cleavage of their complex by Tolloid (Tld). When the inhibitory activity of Sog is removed, Mad phosphorylation is expanded. In spite of the uniform expression of Scw, pMad expansion is restricted to the dorsal domain of the embryo where Dpp is expressed. This demonstrates that Mad phosphorylation requires simultaneous activation by Scw and Dpp. Indeed, the early pMad pattern is abolished when either the Scw receptor Saxophone (Sax), the Dpp receptor Thickveins (Tkv), or Dpp are removed. After germ band extension, a uniform accumulation of pMad is observed in the entire dorsal domain of the embryo, with a sharp border at the junction with the neuroectoderm. From this stage onward, activation by Scw is no longer required, and Dpp suffices to induce high levels of pMad. In these subsequent phases pMad accumulates normally in the presence of ectopic Sog, in contrast to the early phase, indicating that Sog is only capable of blocking activation by Scw and not by Dpp.

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1343-1352 ◽  
Author(s):  
L.H. Frank ◽  
C. Rushlow

The amnioserosa is an extraembryonic, epithelial tissue that covers the dorsal side of the Drosophila embryo. The initial development of the amnioserosa is controlled by the dorsoventral patterning genes. Here we show that a group of genes, which we refer to as the U-shaped-group (ush-group), is required for maintenance of the amnioserosa tissue once it has differentiated. Using several molecular markers, we examined amnioserosa development in the ush-group mutants: u-shaped (ush), hindsight (hnt), serpent (srp) and tail-up (tup). Our results show that the amnioserosa in these mutants is specified correctly and begins to differentiate as in wild type. However, following germ-band extension, there is a premature loss of the amnioserosa. We demonstrate that this cell loss is a consequence of programmed cell death (apoptosis) in ush, hnt and srp, but not in tup. We discuss the role of the ush-group genes in maintaining the amnioserosa's viability. We also discuss a possible role for the amnioserosa in germ-band retraction in light of these mutants' unretracted phenotype.


Development ◽  
1989 ◽  
Vol 105 (4) ◽  
pp. 761-767 ◽  
Author(s):  
P.A. Lawrence ◽  
P. Johnston

The first sign of metamerization in the Drosophila embryo is the striped expression of pair-rule genes such as fushi tarazu (ftz) and even-skipped (eve). Here we describe, at cellular resolution, the development of ftz and eve protein stripes in staged Drosophila embryos. They appear gradually, during the syncytial blastoderm stage and soon become asymmetric, the anterior margins of the stripes being sharply demarcated while the posterior borders are undefined. By the beginning of germ band elongation, the eve and ftz stripes have narrowed and become very intense at their anterior margins. The development of these stripes in hairy-, runt-, eve-, ftz- and engrailed- embryos is illustrated. In eve- embryos, the ftz stripes remain symmetric and lack sharp borders. Our results support the hypothesis (Lawrence et al. Nature 328, 440–442, 1987) that individual cells are allocated to parasegments with respect to the anterior margins of the eve and ftz stripes.


2010 ◽  
Vol 37 (6) ◽  
pp. 654-661 ◽  
Author(s):  
Xin TIAN ◽  
Chen LI ◽  
Yu-Ying LI ◽  
Zhuan-Hua WANG

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Gongming Li ◽  
Qingqing Guo ◽  
Chao Feng ◽  
Huan Chen ◽  
Wenjiao Zhao ◽  
...  

Abstract Background Schistosomiasis is a chronic parasitic disease that affects millions of people’s health worldwide. Because of the increasing drug resistance to praziquantel (PZQ), which is the primary drug for schistosomiasis, developing new drugs to treat schistosomiasis is crucial. Oxadiazole-2-oxides have been identified as potential anti-schistosomiasis reagents targeting thioredoxin glutathione reductase (TGR). Methods In this work, one of the oxadiazole-2-oxides derivatives furoxan was used as the lead compound to exploit a series of novel furoxan derivatives for studying inhibitory activity against both recombinant Schistosoma japonicum TGR containing selenium (rSjTGR-Sec) and soluble worm antigen protein (SWAP) containing wild-type Schistosoma japonicum TGR (wtSjTGR), in order to develop a new leading compound for schistosomiasis. Thirty-nine novel derivatives were prepared to test their activity toward both enzymes. The docking method was used to detect the binding site between the active molecule and SjTGR. The structure–activity relationship (SAR) of these novel furoxan derivatives was preliminarily analyzed. Results It was found that several new derivatives, including compounds 6a–6d, 9ab, 9bd and 9be, demonstrated greater activity toward rSjTGR-Sec or SWAP containing wtSjTGR than did furoxan. Interestingly, all intermediates bearing hydroxy (6a–6d) showed excellent inhibitory activity against both enzymes. In particular, compound 6d with trifluoromethyl on a pyridine ring was found to have much higher inhibition toward both rSjTGR-Sec (half-maximal inhibitory concentration, IC50,7.5nM) and SWAP containing wtSjTGR (IC50 55.8nM) than furoxan. Additionally, the docking method identified the possible matching sites between 6d and Schistosoma japonicum TGR (SjTGR), which theoretically lends support to the inhibitory activity of 6d. Conclusion The data obtained herein showed that 6d with trifluoromethyl on a pyridine ring could be a valuable leading compound for further study.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5504-5514 ◽  
Author(s):  
Pavel N. Pichurin ◽  
Gregorio D. Chazenbalk ◽  
Holly Aliesky ◽  
Oxana Pichurina ◽  
Basil Rapoport ◽  
...  

Abstract Naked DNA vaccination with the TSH receptor (TSHR) does not, in most studies, induce TSHR antibodies and never induces hyperthyroidism in BALB/c mice. Proteins expressed endogenously by vaccination are preferentially presented by major histocompatibility complex class I, but optimal T cell help for antibody production requires lysosomal processing and major histocompatibility complex class II presentation. To divert protein expression to lysosomes, we constructed a plasmid with the TSHR ectodomain spliced between the signal peptide and transmembrane-intracellular region of lysosome-associated membrane protein (LAMP)-1, a lysosome-associated membrane protein. BALB/c mice pretreated with cardiotoxin were primed intramuscularly using this LAMP-TSHR chimera and boosted twice with DNA encoding wild-type TSHR, TSHR A-subunit, or LAMP-TSHR. With each protocol, spleen cells responded to TSHR antigen by secreting interferon-γ, and 60% or more mice had TSHR antibodies detectable by ELISA. TSH binding inhibitory activity was present in seven, four, and two of 10 mice boosted with TSHR A-subunit, LAMP-TSHR, or wild-type TSHR, respectively. Importantly, six of 30 mice had elevated T4 levels and goiter (5 of 6 with detectable thyroid-stimulating antibodies). Injecting LAMP-TSHR intradermally without cardiotoxin pretreatment induced TSHR antibodies detectable by ELISA but not by TSH binding inhibitory activity, and none became hyperthyroid. These findings are consistent with a role for cardiotoxin-recruited macrophages in which (unlike in fibroblasts) LAMP-TSHR can be expressed intracellularly and on the cell surface. In conclusion, hijacking the TSHR to lysosomes enhances T cell responses and TSHR antibody generation and induces Graves’-like hyperthyroidism in BALB/c mice by intramuscular naked DNA vaccination.


Immunobiology ◽  
2006 ◽  
Vol 211 (6-8) ◽  
pp. 449-453 ◽  
Author(s):  
Elisabeth Zinser ◽  
Matthias Lechmann ◽  
Antje Golka ◽  
Barry Hock ◽  
Alexander Steinkasserer

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Erbin Dai ◽  
Dana McIvor ◽  
Liying Liu ◽  
Ganesh Munaswamy-Ramanujam ◽  
Yunming Sun ◽  
...  

Background: Chemokines bind to glycosaminoglycans (GAGs) forming gradients that direct inflammatory cell invasion. The viral chemokine modulating protein (CMP), MT-7 binds the C terminal, GAG-binding domain of chemokines and has been previously reported to significantly reduce cell invasion and plaque growth in rat aortic and renal transplant models. Two other viral CMPs, M-T1 and M3 CMPs bind the N terminal domain of chemokines that bind to cell surface receptors. To determine the role of CC chemokine receptor 2 (CCR2) and GAGs for M-T7 anti-inflammatory activity, effects of M-T7 on plaque growth were assessed after mouse CCR2 deficient (CCR2−/−) or GAG deficient (NDST1−/−) aortic allograft transplant. Mononuclear cell migration in response to MCP-1 or RANTES into mouse ascites was also tested. Active sites necessary for M-T7 inhibition of chemokine function and monocyte activation, were assessed by infusion of in the mouse cell migration and human monocyte membrane fluidity assays. Results: M-T7 significantly reduced cell migration and intimal hyperplasia in wild type CCR2+/+ (p<0.009), and CCR2−/− aortic transplants (p<0.026). M-T1 and M3 inhibited cell invasion and plaque in CCR2+/+, but not CCR2−/− mice. M-T7 inhibited plaque growth and CC chemokine (MCP-1 and RANTES)-induced cell migration in wild type mice (P<0.01), but not in NDST1−/− mice (P=0.34). Selected M-T7 point mutations Ty (Y)46A, and Val (V) 210A no longer block chemokine-induced cell migration nor monocyte activation, whereas Asn (N) 40, Asn (N) 63 and Val (V)129 retain inhibitory activity. Conclusions: M-T7 but not M-T1 nor M3, blocks cell migration and plaque growth in CCR2 deficient (CCR2−/−) mouse aortic transplant models. M-T7 loses the ability to block cell migration and plaque growth in NDST1−/−, GAG (heparan sulfate) deficient mice. Point mutations Tyr46 and Val 210 lack inflammatory for mouse and human inflammatory monocyte responses indicating that these amino acid residues on the M-T7 CMP protein are required for inhibitory activity.


Development ◽  
1993 ◽  
Vol 119 (2) ◽  
pp. 533-543 ◽  
Author(s):  
K. Broadie ◽  
M. Bate

We have examined the role of innervation in directing embryonic myogenesis, using a mutant (prospero), which delays the pioneering of peripheral motor nerves of the Drosophila embryo. In the absence of motor nerves, myoblasts fuse normally to form syncytial myotubes, myotubes form normal attachments to the epidermis, and a larval musculature comparable to the wild-type pattern is generated and maintained. Likewise, the twist-expressing myoblasts that prefigure the adult musculature segregate normally in the absence of motor nerves, migrate to their final embryonic positions and continue to express twist until the end of embryonic development. In the absence of motor nerves, myotubes uncouple at the correct developmental stage to form single cells. Subsequently, uninnervated myotubes develop the mature electrical and contractile properties of larval muscles with a time course indistinguishable from normally innervated myotubes. We conclude that innervation plays no role in the patterning, morphogenesis, maintenance or physiological development of the somatic muscles in the Drosophila embryo.


Development ◽  
1971 ◽  
Vol 25 (3) ◽  
pp. 277-299
Author(s):  
S. K. Moloo

The degree of determination of the young embryo of S. gregaria has been investigated using ligation, thermocautery and centrifugation techniques. From the overall results, it is suggested that the early development of the embryo is mediated by two physiological centres. The formation of the germ rudiment is controlled by an activation centre located in the periplasm round the posterior end of the egg. This centre is already present at the zygote nucleus stage and is essential during the very early cleavage period. The differentiation of the germ band is induced by the activity of a second centre, the differentiation centre, located in the presumptive thorax. It apparently becomes established at least by the late blastoderm stage and its activity continues during the period of germ-band formation. During the late cleavage and early blastoderm stages, the egg is labile and the embryo is therefore able to normalize its development after part or parts of the germinal Anlage have been cauterized, removed or displaced. The differentiation centre completes its functions by the beginning of gastrulation. Thereafter, the embryo is determined. The embryo can regulate its size at least up to the gastrulation stage provided that a certain minimum amount of usable yolk is available. The development of the serosa is not under the control of either centre. This structure seems to be capable of regeneration providing that a part of the extra-embryonic blastoderm remains intact.


Development ◽  
1988 ◽  
Vol 104 (Supplement) ◽  
pp. 51-60 ◽  
Author(s):  
Philip Ingham ◽  
Peter Gergen

The pair-rule genes of Drosophila play a fundamental role in the generation of periodicity in the early embryo. We have analysed the transcript distributions of runt, hairy, even-skipped and fushi tarazu in single and double mutant ernbryos. The results indicate a complex set of interactions between the genes during the blastoderm stage of embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document